During restoration of blood flow of the ischemic heart induced by coronary occlusion, free radicals cause lipid peroxidation with myocardial injury. Lipid peroxidation end-products, such as malondialdehyde (MDA), have been used to assess oxygen free radical-mediated injury of the ischemic-reperfused (I/R) myocardium in rats. This experimental study assessed the preventive effect of caffeic acid phenthyl ester (CAPE), antioxidant, on I/R-induced lipid peroxidation in the rat heart. We are also interested in the role of CAPE on glutathione (GSH) levels, an antioxidant whose levels are influenced by oxidative stress. I/R leads to the depletion of GSH which is the major intracellular nonprotein sulphydryl and plays an important role in the maintenance of cellular proteins and lipid in their functional state and acts primarily to protect these important structures against the threat of oxidation. In addition, we also examined morphologic changes in the heart by using light microscopy. The left coronary artery was occluded for 30 min and then reperfused for 120 min more before the experiment was terminated. CAPE (50 microM kg(-1)) was administered 10 min prior to ischemia and during occlusion by infusion. At the end of the reperfusion period, rats were sacrificed, and the heart was quickly removed for biochemical determination and histopathological analysis. I/R was accompanied by a significant increase in MDA production and decrease in GSH content in the rat heart. Administration of CAPE reduced MDA production and prevented depletion of GSH content. These beneficial changes in these biochemical parameters were also associated with parallel changes in histopathological appearance. These findings imply that I/R plays a causal role in heart injury due to overproduction of oxygen radicals or insufficient antioxidant and CAPE exert cardioprotective effects probably by the radical scavenging and antioxidant activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-005-0551-8 | DOI Listing |
Cardiovasc Res
January 2025
Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China.
Aims: Decrease in repolarizing K+ currents, particularly the fast component of transient outward K+ current (Ito,f), prolongs action potential duration (APD) and predisposes the heart to ventricular arrhythmia during cardiac hypertrophy. Histone deacetylases (HDACs) have been suggested to participate in the development of cardiac hypertrophy, and class I HDAC inhibition has been found to attenuate pathological remodeling. This study investigated the potential therapeutic effects of HDAC2 on ventricular arrhythmia in pressure overload-induced cardiac hypertrophy.
View Article and Find Full Text PDFSteroids
January 2025
Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China. Electronic address:
Due to the difference of estrogen levels in different phases of estrous cycle, it is necessary to exclude the influence of endogenous estrogen when studying the cardiovascular effects of estrogen and its analogues. In this study, the ischemia/reperfusion (I/R) injury of isolated heart were investigated in female rats during different phases of estrous cycle with male rats as comparison. The results indicated that the estrogen content in blood of rats during metestrus and diestrus (MD) was lower than those during proestrus and estrous (PE).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616.
The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.
Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.
Front Physiol
January 2025
Susan Samueli Integrative Health Institute and Department of Medicine, University of California, Irvine, Irvine, CA, United States.
Stellate ganglion blockade (SGB) is a practical approach to managing many clinical disorders. Ultrasound-guided SGB is currently adopted as a more effective and safer method in humans. Developing this technique in rats would facilitate further study of SGB application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!