Defining the substrate that influences the most favourably the myocardial post-ischemic recovery is subject of debates, due to dissociation between functional and biochemical benefits. Hence, we studied the effects of either glucose or different fatty acids on the functional and metabolic recovery of post-ischemic cardiomyocytes in a substrate-free hypoxia model of simulated ischemia-reperfusion. Rat cardiomyocytes were submitted to a 2.5 h simulated ischemia followed by a 2 h reoxygenation without substrate (control), or with either glucose, octanoic acid, oleic acid, or elaidic acid. During simulated ischemia, electromechanical function gradually disappeared while the cellular viability and mitochondrial function declined. During control simulated reperfusion, cardiomyocytes recovered near normal function but a significant reduction in the action potential amplitude and rate persisted. The addition of glucose or oleic acid during simulated reperfusion promoted a faster, better and sustain functional recovery. Amongst the fatty acids, the functional recovery was slower with elaidic and octanoic acids as compared with oleic acid. The mitochondrial function was better improved during simulated reperfusion with glucose than with the tested fatty acids, among which elaidic acid was the less unfavourable. Paradoxically, the addition of whichever substrate during simulated reperfusion tended to worsen the cellular viability. Thus, cardiomyocytes recovery strongly relies on the characteristics of the substrate supplied at the onset of simulated reperfusion: glucidic or lipidic nature, chain-length, insaturation degree. Moreover, these data suggest that defining the appropriateness of a given substrate for the post-ischemic cardiomyocyte recovery is closely related to the functional and the biological endpoints in consideration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-005-7375-4 | DOI Listing |
FASEB J
January 2025
Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China.
Spaceflight-induced multi-organ dysfunction affects the health of astronauts and the safety of in-orbit flight. However, the effect of microgravity on the kidney and the underlying mechanisms are unknown. In the current study, we used a hindlimb unweighting (HU) animal model to simulate microgravity and employed histological analysis, ischemia-reperfusion experiments, renal ultrasonography, bioinformatics analysis, isometric force measurement, and other molecular experimental settings to evaluate the effects of microgravity on the kidneys and the underlying mechanisms involved in this transition.
View Article and Find Full Text PDFCell Signal
January 2025
Clinic School of Medicine and Affiliated Hospital, North China University of Science and Technology, Tangshan, China. Electronic address:
Purpose: This study aims to investigate whether zinc ion (Zn) alleviates myocardial ischemia-reperfusion injury (MIRI) through the MAM-associated signaling pathway and to explore its impact on ERS and calcium overload.
Methods: H9C2 cells were cultured in a DMEM supplemented with 10 % fetal bovine serum and 1 % antibiotic solution. A MIRI model was established through simulated ischemia and reoxygenation with Zn treatment in a complete medium.
Drug Des Devel Ther
January 2025
Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
Purpose: This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.
Methods: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin.
Animal Model Exp Med
January 2025
Department of General Surgery, Dongfang Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University/Fuzong Clinical Medical College of Fujian Medical University/College of Integrative Medicine Fujian University of Traditional Chinese Medicine/The 900th Hospital of Joint Logistics Support Force, PLA, Fuzhou, China.
Background: The aim of the study was to explore a feasible method for alleviating limb ischemia-reperfusion injury (LI/RI) through the use of a high-concentration citrate solution (HC-A solution) for limb perfusion (LP).
Methods: Eighteen pigs were divided into three groups: the Sham group, LI/RI group, and HCA group. The Sham group underwent exposure of the iliac artery and vein.
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 401336 Chongqing, China.
Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.
Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!