[The study on the growth process of ZnO nanorods].

Guang Pu Xue Yu Guang Pu Fen Xi

Laboratory of Reaction and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Published: March 2005

Albstract The authors synthesized ZnO nanorods by calcining the precursor composed of PVP and Zn(CH3COO)2.2H2O at 300 degrees C. In order to investigate the growth process of ZnO nanorods, the precursor was calcined for different time (0.5, 3, 12, 24 h) and the corresponding products were measured by TEM, HR-TEM (high-resolution transmission electron microscopic), SAED (selected-area electron diffraction pattern) and XRD. The result showed that there were ZnO crystallites in the precursor of PVP and Zn(CH3COO)2.2H2O, which was dried at 110 degrees C. When the precursor was calcined at 300 degrees C for 0.5 h, ZnO nanorods could be observed with diameter of 50 nm and the nanorods consisted of two parts. One was compact nanorod with diameter of about 30 nm and the other part was ZnO crystallites attaching around the nanorod. This phenomenon indicated that there might be a transverse growth direction of ZnO nanorods at early time of crystal growth. When the precursor was calcined for 3 h, the products were direct and smooth single crystal ZnO nanorods. Further increasing the calcining time at 300 degrees C could improve the length of the ZnO nanorods in a certain extent while the diameter changed a little. The HR-TEM results showed that the growth direction of ZnO nanorods was along c axis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

zno nanorods
28
300 degrees
12
precursor calcined
12
zno
10
growth process
8
process zno
8
nanorods
8
pvp znch3coo22h2o
8
zno crystallites
8
growth direction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!