In this study for exploring the effect of RGD peptide on adhesive stability of endothelial cells biomaterial surface, all materials were divided into three groups, RGD group (PET covalently grafted synthetic RGD peptides), control group (PET precoated with fibronectin) and blank group (Non-coated surface). Cultured human umbilical vein endothelial cells (HUVECs) were seeded on the materials, then adhesive stability of HUVECs on the varied PET surfaces was observed under steady flow condition, and effects of shear stress and shear time on adherent cells were compared. The results showed that the resistance adherent endothelial cells to detachment by flow was shear stress and shear time dependent. Comparison three groups under the same condition revealed that the ECs retention rates of RGD-grafted or fibronectin-coated group were much higher than that of the non-coated group. Under 8.19 dyne/cm2 shear stress after 4h, retention rates were 13.73% (blank group), 43.33% (RGD group) and 40.75% (control group) respectively. These data indicated that RGD peptide can improve the adhesive stability of endothelial cell on biomaterial and the effect of RGD in vivo needs further studies.
Download full-text PDF |
Source |
---|
Polymers (Basel)
December 2024
Higher Polytechnic School of Linares, University of Jaén, 23700 Linares, Spain.
In recent years, the construction industry has faced challenges related to rising material costs, labor shortages and environmental sustainability, resulting in an increased interest in modular construction cores composed of recycled materials, such as XPS, PUR, PLW and GFRP, from waste from the truck body industry. Two resins, PUR and polyester, were used to bond these recycled composites. Physical, chemical and mechanical analyses showed that the panels formed with PUR resin had superior workability due to the higher open time of the resin, 11.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea.
Recent advancements in polymer materials have enabled the synthesis of bio-based monomers from renewable resources, promoting sustainable alternatives to fossil-based materials. This study presents a novel zwitterionic surfactant, SF, derived from 10-undecenoic acid obtained from castor oil through a four-step reaction, achieving a yield of 78%. SF has a critical micelle concentration (CMC) of 1235 mg/L, slightly higher than the commercial anionic surfactant Rhodacal DS-4 (sodium dodecyl benzene sulfonate), and effectively stabilizes monomer droplets, leading to excellent conversion and stable latex formation.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania.
This study examines the enhancement of the mechanical strength of polymer resins through reinforcement with synthetic (glass) and natural (hemp, jute) fibers, using the TRIZ-ARIZ methodology to optimize composite design for improved mechanical properties, sustainability, and economic efficiency. Mechanical testing, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were conducted to evaluate the properties of the composite materials. Regarding tensile strength testing, the results showed the following: jute fiber achieved the best results, with a maximum tensile values of 43.
View Article and Find Full Text PDFToxics
November 2024
College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea.
Tert-butyl phenolic antioxidants (TBP-AOs) are employed to inhibit oxidation and function as stabilizers and protectants in a broad spectrum of consumer products, such as food packaging, adhesives, lubricants, plastics, and cosmetics. The extensive utilization of TBP-AOs results in human exposure through various pathways. Furthermore, some TBP-AOs have been identified as potential endocrine disruptors and may cause liver and lung damage, as well as allergic reactions.
View Article and Find Full Text PDFMicroorganisms
December 2024
Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China.
Enterotoxigenic (ETEC) is a major pathogen causing diarrhea in humans and animals, with increasing antimicrobial resistance posing a growing challenge in recent years. Lytic bacteriophages (phages) offer a targeted and environmentally sustainable approach to combating bacterial infections, particularly in eliminating drug-resistant strains. In this study, ETEC strains were utilized as indicators, and a stable, high-efficiency phage, designated vB_EcoM_JE01 (JE01), was isolated from pig farm manure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!