To prepare poly(lactic acid/glycolic acid/ asparagic acid-co- polyethylene glycol) (PLGA-[ASP-PEG]) and examine the cellular biocompatibility. PLGA-[ASP-PEG] was obtained by bulk ring-opening copolymerization method, examined by infrared spectrometry (IR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). Bone marrow stromal cells(BMSCs) were cultured with PLGA-[ASP-PEG] (experiment gruop) and PLGA (control group) in vitro respectively, and were observed by phase-contrast microscopy and scanning electron microscopy. The resuls showed that PLGA-[ASP-PEG] was obtained and proved by IR and 1H NMR. The BMSCs of the experiment group could well attach to and extend on the surface of the PLGA-[ASP-PEG], and could proliferate and secrete better extracellular matrix, compared with control. The PLGA-[ASP-PEG] has good cellular a biocompatibility. It can be used as a biomaterial for bone tissue engineering.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cellular biocompatibility
8
plga-[asp-peg]
6
[synthesis bio-active
4
bio-active bone-matrix
4
bone-matrix material
4
material study
4
study cellular
4
cellular biocompatibility]
4
biocompatibility] prepare
4
prepare polylactic
4

Similar Publications

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

Ultrasmall Au-GRHa Nanosystem for FL/CT Dual-Mode Imaging-Guided Targeting Photothermal Therapy of Ovarian Cancer.

Anal Chem

January 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.

As the most common and lethal cancer of the female gonads, ovarian cancer (OC) has a grave impact on people's health. OC is asymptomatic, insidious in onset, difficult to diagnose and treat, fast-growing, and easy to metastasize and has poor prognosis and high mortality. How to detect OC as early as possible and treat it without side effects has become a challenging medical problem.

View Article and Find Full Text PDF

In recent years, the design of various ultrasound responsive echogenic nanomaterials offers many advantages such as deep tissue penetration, high signal intensity, colloidal stability, biocompatibility and less expensive for ultrasound-based cancer cell imaging while providing the option to monitor the progress of tumor volume during the treatment. Further, the ability of nanomaterials to combine photo-thermal therapy (PTT) and chemotherapy has opened a new avenue in the development of cancer theranostics for synergistic cancer therapy. Herein, we report MoS nanoflowers (NFs) surface decorated with CuS nanorods (NRs) and folic acid-derived carbon dots (FACDs) using cystine-polyethyleneimine (PEI) linker for PTT-chemotherapy.

View Article and Find Full Text PDF

Implantable drug delivery systems are crucial for achieving sustained delivery of active compounds to specific sites or systemic circulation. In this study, a novel reservoir-type implant combining a biodegradable rate-controlling membrane with a drug-containing core prepared using direct compression techniques is developed. The membrane is composed of poly(caprolactone) (PCL), and risperidone (RIS) served as the model drug.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!