Autoassociative memory design using interconnected generalized brain-state-in-a-box neural networks.

Int J Neural Syst

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.

Published: June 2005

A class of interconnected neural networks composed of generalized Brain-State-in-a-Box (gBSB) neural subnetworks is considered. Interconnected gBSB neural network architectures are proposed along with their stability conditions. The design of the interconnected neural networks is reduced to the problem of solving linear matrix inequalities (LMIs) to determine the interconnection parameters. A method for solving LMIs is devised generating the solutions that, in general, are further away from zero than the corresponding solutions obtained using MATLAB's LMI toolbox, thus resulting in stronger interconnections between the subnetworks. The proposed architectures are then used to construct neural associative memories. Simulations are performed to illustrate the results obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065705000189DOI Listing

Publication Analysis

Top Keywords

neural networks
12
design interconnected
8
generalized brain-state-in-a-box
8
interconnected neural
8
gbsb neural
8
neural
6
autoassociative memory
4
memory design
4
interconnected
4
interconnected generalized
4

Similar Publications

Multilayer network analysis in patients with end-stage kidney disease.

Sci Rep

December 2024

Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea.

This study aimed to investigate alterations in a multilayer network combining structural and functional layers in patients with end-stage kidney disease (ESKD) compared with healthy controls. In all, 38 ESKD patients and 43 healthy participants were prospectively enrolled. They exhibited normal brain magnetic resonance imaging (MRI) without any structural lesions.

View Article and Find Full Text PDF

Vertebral collapse (VC) following osteoporotic vertebral compression fracture (OVCF) often requires aggressive treatment, necessitating an accurate prediction for early intervention. This study aimed to develop a predictive model leveraging deep neural networks to predict VC progression after OVCF using magnetic resonance imaging (MRI) and clinical data. Among 245 enrolled patients with acute OVCF, data from 200 patients were used for the development dataset, and data from 45 patients were used for the test dataset.

View Article and Find Full Text PDF

The advent of smart cities has brought about a paradigm shift in urban management and citizen engagement. By leveraging technological advancements, cities are now able to collect and analyze extensive data to optimize service delivery, allocate resources efficiently, and enhance the overall well-being of residents. However, as cities become increasingly interconnected and data-dependent, concerns related to data privacy and security, as well as citizen participation and representation, have surfaced.

View Article and Find Full Text PDF

Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias.

View Article and Find Full Text PDF

A two-level resolution neural network with enhanced interpretability for freeway traffic forecasting.

Sci Rep

December 2024

Department of Civil Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Deep learning models are widely used for traffic forecasting on freeways due to their ability to learn complex temporal and spatial relationships. In particular, graph neural networks, which integrate graph theory into deep learning, have become popular for modeling traffic sensor networks. However, traditional graph convolutional networks (GCNs) face limitations in capturing long-range spatial correlations, which can hinder accurate long-term predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!