A compact, dedicated cadmium zinc telluride (CZT) gamma camera coupled with a fully three-dimensional (3-D) acquisition system may serve as a secondary diagnostic tool for volumetric molecular imaging of breast cancers, particularly in cases when mammographic findings are inconclusive. The developed emission mammotomography system comprises a medium field-of-view, quantized CZT detector and 3-D positioning gantry. The intrinsic energy resolution, sensitivity and spatial resolution of the detector are evaluated with Tc-99m (140 keV) filled flood sources, capillary line sources, and a 3-D frequency-resolution phantom. To mimic realistic human pendant, uncompressed breast imaging, two different phantom shapes of an average sized breast, and three different lesion diameters are imaged to evaluate the system for 3-D mammotomography. Acquisition orbits not possible with conventional emission, or transmission, systems are designed to optimize the viewable breast volume while improving sampling of the breast and anterior chest wall. Complications in camera positioning about the patient necessitate a compromise in these two orbit design criteria. Image quality is evaluated with signal-to-noise ratios and contrasts of the lesions, both with and without additional torso phantom background. Reconstructed results indicate that 3-D mammotomography, incorporating a compact CZT detector, is a promising, dedicated breast imaging technique for visualization of tumors < 1 cm in diameter. Additionally, there are no outstanding trajectories that consistently yield optimized quantitative lesion imaging parameters. Qualitatively, imaging breasts with realistic torso backgrounds (out-of-field activity) substantially alters image characteristics and breast morphology unless orbits which improve sampling are utilized. In practice, the sampling requirement may be less strict than initially anticipated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450799 | PMC |
http://dx.doi.org/10.1109/tmi.2005.852501 | DOI Listing |
Phys Med Biol
June 2009
Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient's pendant breast. This study evaluated stationary-tilt angles for the CT sub-system that will enable maximal volumetric sampling and viewing of the breast and chest wall.
View Article and Find Full Text PDFPhys Med
October 2012
Department of Radiology, Duke University Medical Center, Durham (NC, USA) 27710; Department of Biomedical Engineering, Duke University, Durham (NC, USA) 27710.
We evaluate a newly developed dedicated cone-beam transmission computed mammotomography (CmT) system configuration using an optimized quasi-monochromatic cone beam technique for attenuation correction of SPECT in a planned dual-modality emission and transmission system for pendant, uncompressed breasts. In this study, we perform initial CmT acquisitions using various sized breast phantoms to evaluate an offset cone-beam geometry. This offset geometry provides conjugate projections through a full 360 degree gantry rotation, and thus yields a greatly increased effective field of view, allowing a much wider range of breast sizes to be imaged without truncation in reconstructed images.
View Article and Find Full Text PDFPhys Med Biol
February 2007
Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
A dual modality computed mammotomography (CmT) and single photon emission computed tomography (SPECT) system for dedicated 3D breast imaging is in development. Using heavy K-edge filtration, the CmT component narrows the energy spectrum of the cone-shaped x-ray beam incident on the patient's pendant, uncompressed breast. This quasi-monochromatic beam is expected to improve discrimination of tissue with similar attenuation coefficients while restraining absorbed dose to below that of dual view mammography.
View Article and Find Full Text PDFPhys Med Biol
October 2006
Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
We evaluate the effect of breast shape and size and lesion location on a dedicated emission mammotomography system developed in our lab. The hemispherical positioning gantry allows ample flexibility in sampling a pendant, uncompressed breast. Realistic anthropomorphic torso (which includes the upper portion of the arm) and breast phantoms draw attention to the necessity of using unique camera trajectories (orbits) rather than simple circular camera trajectories.
View Article and Find Full Text PDFIEEE Trans Med Imaging
July 2005
Multi-Modality Imaging Laboratory, Department of Biomedical Engineering, Duke University Medical Center, DUMC-3949, Durham, NC 27710, USA.
A compact, dedicated cadmium zinc telluride (CZT) gamma camera coupled with a fully three-dimensional (3-D) acquisition system may serve as a secondary diagnostic tool for volumetric molecular imaging of breast cancers, particularly in cases when mammographic findings are inconclusive. The developed emission mammotomography system comprises a medium field-of-view, quantized CZT detector and 3-D positioning gantry. The intrinsic energy resolution, sensitivity and spatial resolution of the detector are evaluated with Tc-99m (140 keV) filled flood sources, capillary line sources, and a 3-D frequency-resolution phantom.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!