The liver is one of the major organs that remove exogenous substances and waste products from the blood circulation. Hepatic macrophages (Kupffer cells) and sinusoidal endothelial cells are responsible for the scavenger function of the liver. The sinusoidal endothelial cells, called scavenger endothelial cells, are believed to take up only soluble substances and nanometer-sized particles under normal conditions, while Kupffer cells can ingest larger particles and whole cells. However, the sinusoidal endothelial cells may have the potential to take up considerably large particles under special conditions. In this morphological study, we compared the uptake ability between sinusoidal endothelial cells and Kupffer cells after intravenous injections of latex beads (20 nm, 100 nm and 500 nm in diameter), bovine serum albumin (BSA) and dextran. Under normal conditions, the sinusoidal endothelial cells vigorously took up 100-nm-sized latex beads as well as 20-nm latex beads. BSA and dextran were ingested by the endothelial cells but not the Kupffer cells. The administration of lipopolysaccharide (LPS), which mimics inflammation, stimulated the uptake by endothelial cells. The uptake of latex beads by Kupffer cells was also elevated under LPS-stimulated conditions, but the uptake of BSA and dextran by them was not. These findings suggest that the sinusoidal endothelial cells can ingest not only soluble substances but also larger particles than those expected, and their uptake ability is strengthened under inflammatory conditions.

Download full-text PDF

Source
http://dx.doi.org/10.2220/biomedres.26.99DOI Listing

Publication Analysis

Top Keywords

endothelial cells
40
sinusoidal endothelial
28
kupffer cells
20
cells
16
latex beads
16
uptake ability
12
bsa dextran
12
endothelial
10
cells sinusoidal
8
soluble substances
8

Similar Publications

Introduction: Trauma and hemorrhagic shock (T/HS) are associated with multiple organ injury. Antithrombin (AT) has anti-inflammatory and organ protective activity through its interaction with endothelial heparan sulfate containing a 3-O-sulfate modification. Our objective was to examine the effects of T/HS on 3-O-sulfated (3-OS) heparan sulfate expression and determine whether AT-heparan sulfate interactions are necessary for its anti-inflammatory properties.

View Article and Find Full Text PDF

Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension.

Science

January 2025

Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.

Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 () deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes.

View Article and Find Full Text PDF

Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.

View Article and Find Full Text PDF

Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine, and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction.

View Article and Find Full Text PDF

Purpose: To investigate the effect of Rho-associated protein kinase (ROCK) inhibitor Y27632 on bioenergetic capacity and resilience of corneal endothelial cells (CECs) under metabolic stress.

Methods: Bovine CECs (BCECs) were treated with Y27632 and subjected to bioenergetic profiling using the Seahorse XFp Analyzer. The effects on adenosine triphosphate (ATP) production through oxidative phosphorylation and glycolysis were measured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!