Background: The goal of this study was to assess how anatomic variations of the nasal cavity affect the accuracy of acoustic rhinometry (AR) measurements.

Methods: A cast model of a human nasal cavity was used to investigate the effects of the nasal valve and paranasal sinuses on AR measurements. A luminal impression of a cadaver nasal cavity was made, and a cast model was created from this impression. To simulate the nasal valve, inserts of varying inner diameter were placed in the model nasal passage. To simulate the paranasal sinuses, side branches with varying neck diameters and cavity volumes were attached to the model.

Results: The AR measurements of the anterior nasal passage were reasonably precise when the passage area of the insert was within the normal range. When the passage area of the insert was reduced, AR measurements significantly underestimated the cross-sectional areas beyond the insert. The volume of the paranasal sinus had limited effect on AR measurements when the sinus ostium was small. However, when the ostium size was large, increasing the volume of the sinus led to significant overestimation of AR-derived areas beyond the ostium.

Conclusion: The pathologies that narrow the anterior nasal passage result in the most significant AR error by causing area underestimation beyond the constriction. It also appears that increased paranasal sinus volume causes overestimation of areas posterior to the sinus ostium when the ostium size is large. If these physical effects are not considered, the results obtained during clinical examination with AR may be misinterpreted.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nasal cavity
16
nasal passage
12
nasal
9
variations nasal
8
acoustic rhinometry
8
cast model
8
nasal valve
8
paranasal sinuses
8
anterior nasal
8
passage area
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!