Multiparameter imaging for the analysis of intracellular signaling.

Chembiochem

European Molecular Biology Laboratory, Gene Expression Program, Meyerhofstrasse 1, 69117 Heidelberg, Germany.

Published: August 2005

In biological experimentation and especially in drug discovery there is a trend towards more complex test systems. Cell-based assays are replacing conventional binding or enzyme assays more and more. This development is strongly driven by novel fluorescent probes that give insight into cellular processes. Target proteins are studied in their natural environment; this gives much more realistic test results, especially with respect to enzyme location and kinetics. However, in the complex environment of cells, many parameters contribute to the performance of the protein of interest. Therefore, it would be desirable to monitor simultaneously as many of the relevant cellular processes as possible. Here, we discuss the possibilities and limitations provided by multiparameter monitoring of cellular events with fluorescent probes. Some novel examples of the use of fluorescent probes and multiparameter imaging are shown.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.200500012DOI Listing

Publication Analysis

Top Keywords

fluorescent probes
12
multiparameter imaging
8
cellular processes
8
imaging analysis
4
analysis intracellular
4
intracellular signaling
4
signaling biological
4
biological experimentation
4
experimentation drug
4
drug discovery
4

Similar Publications

The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

Fluorescent reporters for glutamate release and postsynaptic Ca signaling are essential tools for quantifying synapse functional heterogeneity across neurons and circuits. However, leveraging these probes for neuroscience requires scalable experimental frameworks. Here, we devised a high-throughput approach to efficiently collect and analyze hundreds of optical recordings of glutaamate release activity at presynaptic boutons in cultured rat hippocampal neurons.

View Article and Find Full Text PDF

The development of a sensory signal amplification approach is very crucial for rapid and precise detection of aflatoxin B (AFB). However, such approaches remain scarce due to the weak interactions between AFB and the sensing probes. Herein, the first example of a dual-excitation fluorescent platform for antibody-free AFB detection is reported, which is assembled by an ordered π-π stack of cationic perylene derivative (PTHA) and tris(2,2'-bipyridine)ruthenium(II) [Ru(bpy)].

View Article and Find Full Text PDF

Catalytic asymmetric C-N cross-coupling towards boron-stereogenic 3-amino-BODIPYs.

Nat Commun

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.

3-Amino boron dipyrromethenes (BODIPYs) are a versatile class of fluorophores widely utilized in live cell imaging, photodynamic therapy, and fluorescent materials science. Despite the growing demand for optically active BODIPYs, the synthesis of chiral 3-amino-BODIPYs, particularly the catalytic asymmetric version, remains a challenge. Herein, we report the synthesis of boron-stereogenic 3-amino-BODIPYs via a palladium-catalyzed desymmetric C-N cross-coupling of prochiral 3,5-dihalogen-BODIPYs.

View Article and Find Full Text PDF

In this study, a sensitive and selective spectrofluorimetric method was developed for the determination of the antidiabetic drug nateglinide based on its reaction with the xanthene dye acid red 87 (AR87). A fluorescence quenching process was observed for the AR87 at 545 nm upon the addition of nateglinide, which was exploited for the quantitative analysis. The reaction mechanism was investigated using quantum mechanical calculations suggesting a transfer between the electron-rich AR87 and the electron-deficient nateglinide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!