A natural form of learning can increase and decrease the survival of new neurons in the dentate gyrus.

Hippocampus

Unit on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.

Published: October 2005

Granule cells born in the adult dentate gyrus undergo a 4-week developmental period characterized by high susceptibility to cell death. Two forms of hippocampus-dependent learning have been shown to rescue many of the new neurons during this critical period. Here, we show that a natural form of associative learning, social transmission of food preference (STFP), can either increase or decrease the survival of young granule cells in adult rats. Increased numbers of pyknotic as well as phospho-Akt-expressing BrdU-labeled cells were seen 1 day after STFP training, indicating that training rapidly induces both cell death and active suppression of cell death in different subsets. A single day of training for STFP increased the survival of 8-day-old BrdU-labeled cells when examined 1 week later. In contrast, 2 days of training decreased the survival of BrdU-labeled cells and the density of immature neurons, identified with crmp-4. This change from increased to decreased survival could not be accounted for by the ages of the cells. Instead, we propose that training may initially increase young granule cell survival, then, if continued, cause them to die. This complex regulation of cell death could potentially serve to maintain granule cells that are actively involved in memory consolidation, while rapidly using and discarding young granule cells whose training is complete to make space for new naïve neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hipo.20097DOI Listing

Publication Analysis

Top Keywords

granule cells
16
cell death
16
young granule
12
brdu-labeled cells
12
natural form
8
increase decrease
8
decrease survival
8
dentate gyrus
8
cells
8
decreased survival
8

Similar Publications

Full-thickness skin wounds remian a significant and pressing challenge. In this study, we introduce a novel composite hydrogel, CS + GA + Zn-HA. This hydrogel is formulated by incorporating 1 % (1 g/100 mL) of bioactive Zinc-substituted hydroxyapatite nanoparticles (Zn-HA) and 0.

View Article and Find Full Text PDF

Huaier polysaccharides inhibits hepatocellular carcinoma via gut microbiota mediated M2 macrophage polarization.

Int J Biol Macromol

December 2024

School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China. Electronic address:

Article Synopsis
  • Liver cancer is a leading cause of cancer mortality globally, with traditional Chinese medicine, particularly Huaier polysaccharides (HP), being used as a potential treatment strategy.
  • HP demonstrated limited effectiveness against human and mouse HCC cells in vitro, but showed stronger anti-HCC effects in animal models, largely mediated by macrophage activity.
  • The study found that HP alters gut microbiota and enhances pro-inflammatory responses while affecting M2 macrophage polarization, suggesting the importance of gut microbiota in HP's efficacy against liver cancer.
View Article and Find Full Text PDF

Phycocyanin-based multifunctional microspheres for treatment of infected radiation-induced skin injury.

Biomaterials

December 2024

Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China. Electronic address:

Radiation therapy is a primary modality for cancer treatment; however, it often leads to various degrees of skin injuries, ranging from mild rashes to severe ulcerations, for which no effective treatments are currently available. In this study, a multifunctional microsphere (PC@CuS-ALG) was synthesized by encapsulating phycocyanin-templated copper sulfide nanoparticles (PC@CuS) within alginate (ALG) using microfluidic technology. Phycocyanin, a natural protein derived from microalgae, shows abilities to scavenge reactive oxygen species, repair radiation-induced damage to skin cells, and ameliorate macrophage-related inflammatory responses.

View Article and Find Full Text PDF

Purpose: Chronic suppurative otitis media (CSOM) is a prominent contributor to preventable hearing loss globally. Probiotic therapy has attracted research interest in human infectious and inflammatory disease. As the most prevalent probiotic, the role of in CSOM remains poorly defined.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) plays important roles in brain development and neural function. Constitutive knockout of the splicing regulator RBM4 reduces BDNF expression in the developing brain and causes cerebellar hypoplasia, an autism-like feature. Here, we show that Rbm4 knockout induced intron 6 retention of Hsf1, leading to downregulation of HSF1 protein and its downstream target BDNF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!