We report the first study of the relation between the wavelength of maximum absorbance (lambdamax) and the photoactivation energy (Ea) in invertebrate visual pigments. Two populations of the opossum shrimp Mysis relicta were compared. The two have been separated for 9,000 years and have adapted to different spectral environments ("Sea" and "Lake") with porphyropsins peaking at lambdamax=529 nm and 554 nm, respectively. The estimation of Ea was based on measurement of temperature effects on the spectral sensitivity of the eye. In accordance with theory (Stiles in Transactions of the optical convention of the worshipful company of spectacle makers. Spectacle Makers' Co., London, 1948), relative sensitivity to long wavelengths increased with rising temperature. The estimates calculated from this effect are Ea,529=47.8+/-1.8 kcal/mol and Ea,554=41.5+/-0.7 kcal/mol (different at P<0.01). Thus the red-shift of lambdamax in the "Lake" population, correlating with the long-wavelength dominated light environment, is achieved by changes in the opsin that decrease the energy gap between the ground state and the first excited state of the chromophore. We propose that this will carry a cost in terms of increased thermal noise, and that evolutionary adaptation of the visual pigment to the light environment is directed towards maximizing the signal-to-noise ratio rather than the quantum catch.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00359-005-0005-5 | DOI Listing |
J Photochem Photobiol B
January 2025
Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA. Electronic address:
Photopolymerization of bovine serum albumin was carried out using reactive oxygen species (ROS) generated by the irradiation of citrate-stabilized gold nanoparticles by a pulsed Nd:YAG laser. The ROS in this case, singlet oxygen (O), targets aromatic amino acids within the protein to induce photopolymerization or crosslinking. Other ROS, like the hydroxyl radical, can also form in solution and under high-energy irradiation.
View Article and Find Full Text PDFCurr Opin Chem Biol
December 2024
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA. Electronic address:
Enzymes catalyze molecular reactions with remarkable efficiency and selectivity under mild conditions. Photoactivated enzymes make use of a light-absorbing chromophore to drive chemical transformations, ideally using sunlight as an energy source. The direct attachment of a chromophore to native enzymes is advantageous, as information on the underlying catalytic mechanisms can be obtained.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Aix Marseille University, CNRS, ICR, Marseille 13397, France.
Nonadiabatic dynamics simulations complement time-resolved experiments by revealing ultrafast excited-state mechanistic information in photochemical reactions. Understanding the relaxation mechanisms of photoexcited molecules finds application in energy, material, and medicinal research. However, with substantial computational costs, the nonadiabatic dynamics simulations have been restricted to ultrafast timescales, typically less than a few picoseconds, thus neglecting a wide range of photoactivated processes occurring in much longer timescales.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, PR China. Electronic address:
Synchronously creating oxygen vacancies (OVs) and an internal electric field (IEF) in photocatalysts could be an ideal strategy to facilitate photogenerated charge separation and surface reactions but remain unexplored for this use. In this work, we report that low-cost and multifunctional CDs can involve in the nucleation reaction of copper vanadates (CuVs) to create OVs and proper IEF at the interface by modulating the valence states of coppers under hydrothermal conditions. Thus, CDs synergistically serve as oxygen vacancy inducer and charge separator in CuVs to extract photogenerated carriers to trigger persulfate (PS) activation for the degradation of tetracycline hydrochloride (TC).
View Article and Find Full Text PDFThe LOV2 domain is commonly harnessed as a source of light-based regulation in engineered optogenetic switches. In prior work, we used LOV2 to create a light-regulated Dihydrofolate Reductase (DHFR) enzyme and showed that structurally disperse mutations in DHFR were able to tune the allosteric response to light. However, it remained unclear how light allosterically activates DHFR, and how disperse mutations modulate the allosteric effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!