A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Doxorubicin induces apoptosis with profile of large-scale DNA fragmentation and without DNA ladder in anaplastic thyroid carcinoma cells via histone hyperacetylation. | LitMetric

Doxorubicin is known to be the most effective single cytotoxic drug against anaplastic thyroid carcinoma (ATC). Although doxorubicin has been shown to cause cell death, at least partly, by inducing apoptosis in ATC cells, the mechanism underlying its pharmacological efficacy has not been fully delineated. We, in this study, revealed that doxorubicin induced apoptosis in ATC cells by altering the acetylation state of histone. Doxorubicin reduced histone deacetylase activity and induced hyperacetylation of histone 3. Noticeably, ladder-like DNA fragments from their genomic DNA on agarose gel were not detected irrespective of several lines of evidence supporting the induction of apoptosis. Pulse field electrophoresis showed disintegration of nuclear DNA into giant fragments of 1-2 Mbp and high molecular-weight fragments of 100-1000 kbp. We next examined whether a histone deacetylase inhibitor trichostatin A (TsA) augmented doxorubicin-induced apoptosis in ATC cells. TSA potentiated doxorubicin-induced stage I apoptosis in ATC cells. Our study sheds light on the development of a new combination therapy strategy for more effective responses for ATC treatment.

Download full-text PDF

Source

Publication Analysis

Top Keywords

apoptosis atc
16
atc cells
16
anaplastic thyroid
8
thyroid carcinoma
8
histone deacetylase
8
apoptosis
6
atc
6
doxorubicin
5
dna
5
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!