The pathways which are activated following damage to nuclear DNA in cancer cells are well understood. There is evidence that treatment with several chemotherapeutic agents may result in damage to mitochondrial DNA. This study investigated the contribution of mitochondrial DNA to cytotoxicity of DNA-interactive agents. To understand the significance of drug interactions with mitochondrial DNA, we investigated A549 non-small cell lung cancer cell lines and their rho0 derivatives in which mitochondrial DNA has been eradicated. The parental cell line showed increased sensitivity to the anthracycline daunorubicin when compared with the A549 rho0 line. In addition, the A549 rho0 line was resistant to the rhodacyanine derivative, MKT-077, which has been shown to interact with mitochondrial DNA. Southern blotting demonstrated that MKT-077 mediated damage to mitochondrial but not nuclear DNA. Restoration of mitochondrial DNA by formation of cybrids restored sensitivity to these agents. The mitochondrial DNA damage, following treatment of A549 rho0 cells with MKT-077, resulted in G2 arrest which was not mediated by expression of p53. Mitochondrial DNA is a critical target for MKT-077 and daunorubicin, and is a potential target for novel chemotherapeutic agents.
Download full-text PDF |
Source |
---|
Adv Med Sci
January 2025
Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic. Electronic address:
Ovarian tumours are these days one of the biggest oncogynecological problems. In addition to surgery, the treatment of ovarian cancer includes also chemotherapy in which platinum preparations are one of the most used chemotherapeutic drugs. The principle of antineoplastic effects of cisplatin (cis-diamminedichloroplatinum(II), CDDP) is its binding to the DNA and the formation of adducts.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
January 2025
Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy. Electronic address:
Circadian rhythms driven by biological clocks regulate physiological processes in all living organisms by anticipating daily geophysical changes, thus enhancing environmental adaptation. Time-resolved serial multi-omic analyses in vivo, ex vivo, and in synchronized cell cultures have revealed rhythmic changes in the transcriptome, proteome, and metabolome, involving up to 50 % of the mammalian genome. Mitochondrial oxidative metabolism is central to cellular bioenergetics, and many nuclear genes encoding mitochondrial proteins exhibit both circadian and ultradian oscillatory expression.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. Electronic address:
The imbalance of microglial homeostasis is highly associated with age-related neurological diseases, where cytosolic endogenous DNA is also likely to be found. As the main medium for storing biological information, endogenous DNA could be localized to cellular compartments normally free of DNA when cells are stimulated. However, the intracellular trafficking of endogenous DNA remains unidentified.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biological Sciences, St. John's University, Queens, New York, USA. Electronic address:
One of the key events in DNA damage response (DDR) is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs), required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles and gluconeogenesis.
View Article and Find Full Text PDFSci Transl Med
January 2025
Graduate Program in Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue (M-860), Miami, FL 33136, USA.
Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!