Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The past decade has seen a surge in research devoted to understanding the role of cell death in the pathogenesis of various forms of cardiovascular disease. In particular, apoptosis has received much attention owing to the tightly regulated biochemical nature of this form of cell death and the realization of potential therapeutic opportunities. The current chapter describes a few of the more widely used protocols for detecting and quantifying apoptosis in cardiovascular tissues. Specifically, this chapter describes terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining for DNA fragmentation, Hoechst staining for chromatin condensation, annexin V labeling of phosphatidylserine externalization, and Western blot and immunoflorescence detection of caspase cleavage and activation, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/1-59259-879-x:277 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!