The depth profile of the counterion concentration within thin polyelectrolyte films was measured in situ using contrast variant specular neutron reflectivity to characterize the initial swelling stage of the film dissolution. We find substantial counterion depletion near the substrate and enrichment near the periphery of the film extending into the solution. These observations challenge our understanding of the charge distribution in polyelectrolyte films and are important for understanding film dissolution in medical and technological applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la050353h | DOI Listing |
J Biomater Sci Polym Ed
January 2025
Department of Medical Affairs, Curie Sciences, Samastipur, Bihar, India.
Nat Commun
January 2025
Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
Wireless energy-responsive systems provide a foundational platform for powering and operating intelligent devices. However, current electronic systems relying on complex components limit their effective deployment in ambient environment and seamless integration of energy harvesting, storage, sensing, and communication. Here, we disclose a coupling effect of electromagnetic wave absorption and moist-enabled generation on carrier transportation and energy interaction regulated by ionic diode effect.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China.
The protein carrier and encapsulation system based on polyelectrolytes plays crucial roles in drug research and development. Traditional methods such as isothermal titration calorimetry and molecular dynamics simulation have illuminated parts of this complex relationship. However, they fall short of capturing the full picture of the interaction during the carrier's fabrication and protein loading dynamics.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Future Photovoltaic Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
Sci Rep
December 2024
POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa hiribidea, 72, 20018, Donostia, Spain.
The anti-polyelectrolyte effect, a characteristic unique to polymer chains containing zwitterions, was investigated for its impact on colloidal stabilization during emulsion polymerization and on the resulting polymer characteristics. The zwitterionic monomer (ZM) 3-[(3-Acrylamidopropyl)dimethylammonio]propane-1-sulfonate (A3361) was selected for the synthesis of 30 wt% emulsifier-free methyl methacrylate/n-butyl acrylate (MMA/n-BA) polymer latex. Three pH conditions were examined: neutral, where the zwitterionic chains are in a collapsed state, and acidic and basic, where these chains adopt an extended conformation, leading to the anti-polyelectrolyte effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!