It has been suggested in many studies that combined treatment with chemotherapeutic agents and apoptosis-inducing ligands belonging to TNFR family is a more effective strategy for cancer treatment. However, the role of androgen regulation of TNFR family-induced apoptosis in prostate cancer is poorly understood. In this study, we investigated the dose-dependent effects of androgen on TNF-alpha and TRAIL-mediated apoptosis in LNCaP. To investigate the interaction between the androgen receptor (AR) and the caspase-2 gene, chromatin immunoprecipitation analysis was used, and we are the first to identify that AR interacts in vivo with an androgen-responsive elements in intron 8 of caspase-2 gene. We have found that DHT inhibited apoptosis in dose-dependent manner. There is a direct, androgen-dependent correlation between the levels of activated Akt and caspase activation after treatment with TNF-alpha and TRAIL. We have also found that there are at least two different regulatory mechanisms of p53 expression by androgen: at the gene and protein levels. At the same time, the level of AR was found to be higher in LNCaP-si-p53 compared to LNCaP-mock cells. These data indicate that there is a mutual regulation of expression between p53 and AR. Our study suggests that androgen-dependent outcome of apoptotic treatment can occur, at least in part, via the caspase-2, Akt and p53-mediated pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361275 | PMC |
http://dx.doi.org/10.1038/sj.onc.1208833 | DOI Listing |
Front Immunol
December 2024
Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan.
Medullary thymic epithelial cells (mTECs) play a crucial role in suppressing the onset of autoimmunity by eliminating autoreactive T cells and promoting the development of regulatory T cells in the thymus. Although mTECs undergo turnover in adults, the molecular mechanisms behind this process remain unclear. This study describes the direct and indirect roles of receptor activator of NF-κB (RANK) and CD40 signaling in TECs in the adult thymus.
View Article and Find Full Text PDFScience
December 2024
Department of Biochemistry, University of Washington, Seattle, WA, USA.
Despite progress in designing protein-binding proteins, the shape matching of designs to targets is lower than in many native protein complexes, and design efforts have failed for the tumor necrosis factor receptor 1 (TNFR1) and other protein targets with relatively flat and polar surfaces. We hypothesized that free diffusion from random noise could generate shape-matched binders for challenging targets and tested this approach on TNFR1. We obtain designs with low picomolar affinity whose specificity can be completely switched to other family members using partial diffusion.
View Article and Find Full Text PDFFish Shellfish Immunol
November 2024
MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China; Hainan Seed Industry Laboratory, Sanya, China. Electronic address:
Fish Shellfish Immunol
November 2024
State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China. Electronic address:
Med Res Rev
January 2025
Université de Caen Normandie, Normandie Univ., CERMN, Caen, France.
Neuronal survival depends on neurotrophins and their receptors. There are two types of neurotrophin receptors: a nonenzymatic, trans-membrane protein of the tumor necrosis factor receptor (TNFR) family-p75 receptor and the tyrosine kinase receptors (TrkR) A, B, and C. Activation of the TrkBR by brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5) promotes neuronal survival, differentiation, and synaptic function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!