We previously identified constitutive Smad signaling in human melanoma cells despite resistance to transforming growth factor-beta (TGF-beta) control of cell proliferation. This led us to investigate the effect of inhibitory Smad7 overexpression on melanoma cell behavior. Using the highly metastatic cell line, 1205-Lu, we thus generated melanoma cell clones constitutively expressing Smad7, and their mock-transfected counterparts. Stable expression of Smad7 resulted in an inhibition of constitutive Smad2/3 phosphorylation, and in a reduced TGF-beta response of Smad3/Smad4-driven gene transactivation, as measured using transfected Smad3/4-specific reporter gene constructs. Smad7 overexpression, however, did not alter their proliferative capacity and resistance to TGF-beta-driven growth inhibition. On the other hand, expression of Smad7 efficiently reduced the capacity of human melanoma cells to invade Matrigel in Boyden migration chambers, while not affecting their motility and adhesion to collagen and laminin. Gelatin zymography identified reduced MMP-2 and MMP-9 secretion by Smad7-expressing melanoma cells as compared with their control counterparts. Smad7-expressing melanoma cells exhibited a dramatically reduced capacity to form colonies under anchorage-independent culture conditions, and, when injected subcutaneously into nude mice, were largely delayed in their ability to form tumors. These results suggest that TGF-beta production by melanoma cells not only affects the tumor environment but also directly contributes to tumor cell aggressiveness through autocrine activation of Smad signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1208900DOI Listing

Publication Analysis

Top Keywords

melanoma cells
24
human melanoma
12
melanoma
8
smad signaling
8
smad7 overexpression
8
melanoma cell
8
expression smad7
8
reduced capacity
8
smad7-expressing melanoma
8
smad7
6

Similar Publications

Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment but can give rise to immune-related adverse events such as ICI-related diabetes mellitus (DM).

Case Presentation: We herein present the case of a 59-year-old Japanese man with malignant melanoma who developed ICI-related DM after 18 months of nivolumab treatment. He experienced marked hyperglycemia and diabetic ketoacidosis without a personal or family history of diabetes.

View Article and Find Full Text PDF

Purpose: Histone deacetylase 6 (HDAC6) plays a critical role in tumorigenesis and tumor progression, contributing to proliferation, chemoresistance, and cell motility by regulating microtubule architecture. Despite its upregulation in melanoma tissues and cell lines, the specific biological roles of HDAC6 in melanoma are not well understood. This study aims to explore the functional effects and underlying mechanisms of WT161, a selective HDAC6 inhibitor, in melanoma cell lines.

View Article and Find Full Text PDF

The dysregulation of matrix metalloproteinases (MMPs) in skin cutaneous melanoma (SKCM) represents a critical aspect of tumorigenesis. In this study, we investigated the diagnostic, prognostic, and therapeutic aspects of the MMPs in SKCM. Thirteen SKCM cell lines and seven normal skin cell lines were cultured under standard conditions for experimental analyses.

View Article and Find Full Text PDF

Inflammasome activation in melanoma progression: the latest update concerning pathological role and therapeutic value.

Arch Dermatol Res

January 2025

Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India.

The progression of melanoma is a complex process influenced by both internal and external cues which encourage the transition of tumour cells, uncontrolled growth, migration, and metastasis. Additionally, inflammation allows tumours to evade the immune system, contributing to cancer development. The inflammasome, a complex of many proteins, is crucial in enhancing immune responses to external and internal triggers.

View Article and Find Full Text PDF

Occurrence of degenerative interactions is thought to serve as a mechanism underlying hybrid unfitness in most animal systems. However, the molecular mechanisms underpinning the genetic interaction and how they contribute to overall hybrid incompatibilities are limited to only a handful of examples. A vertebrate model organism, Xiphophorus, is used to study hybrid dysfunction, and it has been shown from this model that diseases, such as melanoma, can occur in certain interspecies hybrids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!