The peptidoglycan-recognition protein LCa (PGRP-LCa) is a transmembrane receptor required for activation of the Drosophila immune deficiency pathway by monomeric Gram-negative peptidoglycan. We have determined the crystal structure of the ectodomain of PGRP-LCa at 2.5-A resolution and found two unique helical insertions in the LCa ectodomain that disrupt an otherwise L-shaped peptidoglycan-docking groove present in all other known PGRP structures. The deficient binding of PGRP-LCa to monomeric peptidoglycan was confirmed by biochemical pull-down assays. Recognition of monomeric peptidoglycan involves both PGRP-LCa and -LCx. We showed that association of the LCa and LCx ectodomains in vitro depends on monomeric peptidoglycan. The presence of a defective peptidoglycan-docking groove, while preserving a unique role in mediating monomeric peptidoglycan induction of immune response, suggests that PGRP-LCa recognizes the exposed structural features of a monomeric muropeptide when the latter is bound to and presented by the ectodomain of PGRP-LCx. Such features include N-acetyl glucosamine and the anhydro bond in the glycan of the muropeptide, which have been demonstrated to be critical for immune stimulatory activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1174924 | PMC |
http://dx.doi.org/10.1073/pnas.0504547102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!