Systems modeling is emerging as a valuable tool in therapeutics. This is seen by the increasing use of clinically relevant computational models and a rise in systems biology companies working with the pharmaceutical industry. Systems models have helped understand the effects of pharmacological intervention at receptor, intracellular and intercellular communication stages of cell signaling. For instance, angiogenesis models at the ligand-receptor interaction level have suggested explanations for the failure of therapies for cardiovascular disease. Intracellular models of myeloma signaling have been used to explore alternative drug targets and treatment schedules. Finally, modeling has suggested novel approaches to treating disorders of intercellular communication, such as diabetes. Systems modeling can thus fill an important niche in therapeutics by making drug discovery a faster and more systematic process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2005.06.008 | DOI Listing |
Phys Rev Lett
December 2024
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA.
We investigate the thermoelectric response of an Abrikosov vortex in type-II superconductors in the deep quantum limit. We consider two thermoelectric geometries, a type-II superconductor-insulator-normal-metal (S-I-N) junction and a local scanning tunneling microscope (STM)-tip normal metal probe over the superconductor. We exploit the strong breaking of particle-hole symmetry in vortex-bound states at subgap energies within the superconducting vortex to realize a giant thermoelectric response in the presence of fluxons.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany.
Superdiffusion is surprisingly easily observed even in systems without the integrability underpinning this phenomenon. Indeed, the classical Heisenberg chain-one of the simplest many-body systems, and firmly believed to be nonintegrable-evinces a long-lived regime of anomalous, superdiffusive spin dynamics at finite temperature. Similarly, superdiffusion persists for long timescales, even at high temperature, for small perturbations around a related integrable model.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA.
A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Physikalisches Institut, University of Bonn, 53115 Bonn, Germany.
We investigate the experimental control of pair tunneling in a double-well potential using Floquet engineering. We demonstrate a crossover from a regime with density-assisted tunneling to dominant pair tunneling by tuning the effective interactions. Furthermore, we show that the pair tunneling rate can be enhanced not only compared to the Floquet-reduced single-particle tunneling but even beyond the static superexchange rate, while keeping the effective interaction in a relevant range.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Initiative for the Theoretical Sciences and CUNY-Princeton Center for the Physics of Biological Function, The Graduate Center, CUNY, New York, New York 10016, USA.
The random-energy model (REM), a solvable spin-glass model, has impacted an incredibly diverse set of problems, from protein folding to combinatorial optimization, to many-body localization. Here, we explore a new connection to secret sharing. We derive an analytic expression for the mutual information between any two disjoint thermodynamic subsystems of the REM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!