The nervous system innervates most of the organs in the body, and controls and coordinates their activities. Effective coordination depends on accurate feedback from target organs. Recent studies have identified a target-based feedback mechanism that regulates a simple neural circuit, the cardiac ganglion-a network of nine neurons whose rhythmic bursts of action potentials drive the contractions of the crustacean heart. The feedback agent, nitric oxide (NO), is produced by the target organ (the heart), and acts on the neural circuit (the ganglion), thus serving as a retrograde, trans-synaptic signaling molecule. NO decreases the ganglionic burst rate, which has both negative chronotropic and negative inotropic effects on the heartbeat. This article will review the evidence identifying NO as an inhibitory modulator in the crustacean heart, and will present new data showing that these inhibitory effects are not mediated by cGMP, the canonical downstream agent mobilized by NO in many other systems. Rather, our data suggest that in the crustacean heart cGMP may play a secondary role in the process of adaptation that occurs in during prolonged exposures to NO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpb.2005.05.050 | DOI Listing |
J Exp Biol
December 2024
Marine Biology & Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK.
Environmental drivers such as salinity can impact the timing, and duration of developmental events in aquatic early life stages of crustaceans, including terrestrial crabs of the family Gecarcinidae. Low salinity delays larval development in land crabs, but nothing is known about its influence on the crucial late-stage encapsulated embryonic, or immediate post-hatch development. Therefore, we exposed fertilised late-stage embryos of the Christmas Island red crab (Gecarcoidea natalis) to differing salinities (100, 75, 50, or 25 % sea water) for 24 h during their spawning period and measured some key developmental and physiological traits.
View Article and Find Full Text PDFGen Comp Endocrinol
December 2024
National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China. Electronic address:
Crustacean female sex hormone (CFSH) was first identified as a female eyestalk-specific factor involved in the female sexual development in blue crab. Whether CFSH has conserved role in other decapod species remains to be clarified. In this study, we identified a CFSH gene (MrCFSH) in the Z and W chromosomes from the prawn Macrobrachium rosenbergii genome.
View Article and Find Full Text PDFChemosphere
December 2024
Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China.
Microplastics and nanoplastics (MPs/NPs) are emerging contaminants ubiquitous in the environment. These particles can act as carriers of hydrophobic organic compounds (HOCs), such as chlorpyrifos (CPF), an organophosphorus insecticide. This study investigates the acute toxicity of CPF combined with model polystyrene nanoplastics (PS-NPs) using Daphnia magna as a model organism.
View Article and Find Full Text PDFFront Nutr
October 2024
Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
Introduction: Krill oil is a dietary supplement derived from Antarctic krill; a small crustacean found in the ocean. Krill oil is a rich source of omega-3 fatty acids, specifically eicosapentaenoic acid and docosahexaenoic acid, as well as the antioxidant astaxanthin. The aim of this study was to investigate the effects of krill oil supplementation, compared to placebo oil (high oleic sunflower oil added astaxanthin), on energy metabolism and substrate turnover in human skeletal muscle cells.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
February 2025
Scientific and Technological Center for Unique Instrumentation RAS, Butlerova st. 15, Moscow 117342, Russia; Lomonosov Moscow State University, Moscow 119991, Russia.
Non-invasive optical registration and subsequent analysis of heart rate (HR) and heart rate variability (HRV) in transparent aquatic animals have recently been proposed as convenient toxicological endpoints, well-suited for automation data acquisition and processing. This approach was evaluated in experiments involving juvenile Daphnia magna and zebrafish (Danio rerio) embryos exposed to glyphosate solutions (20 mg/L, 2 mg/L, 0.2 mg/L, and 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!