Reduced CCK-induced Fos expression in the hindbrain, nodose ganglia, and enteric neurons of rats lacking CCK-1 receptors.

Brain Res

Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, 126 South Henderson, University Park, PA, 16802, USA.

Published: July 2005

Many of the actions of cholecystokinin (CCK) are mediated by CCK-1 receptors, expressed by enteric and vagal afferent neurons. Otsuka Long-Evans Tokushima Fatty rats (OLETF) do not express CCK-1 receptors, and do not exhibit the vagally mediated responses to CCK. To determine whether the OLETF rat's failure to respond to CCK is correlated with failure of CCK to activate enteric and vagal neurons, we quantified neuronal Fos immunoreactivity in the dorsal vagal complex of the hindbrain, the nodose ganglia, and the ganglia of the myenteric and submucosal plexuses of the duodenum following intraperitoneal injection of CCK-8 (20 microg/kg). Compared to vehicle injection, CCK administration resulted in significant increases in the number of Fos-immunopositive neurons in the nucleus of the solitary tract, area postrema, and dorsal vagal motor nucleus of control, LETO rats. In OLETF rats, however, CCK did not increase numbers of Fos-immunoreactive neurons in any of these brain structures. CCK also induced significantly larger numbers of Fos-immunoreactive neuronal nuclei in the nodose ganglia of LETO rats, but not in the nodose ganglia of OLETF rats. Finally, LETO, but not OLETF rats exhibited striking increases in the number of Fos-immunoreactive nuclei of myenteric and submucosal neurons, following CCK injection. Absence of CCK-induced Fos expression in OLETF rats is consistent with attenuation of ingestive and gastrointestinal responses to CCK in the CCK-1 receptor deficient rats. These results also suggest that CCK-induced Fos expression in enteric and vagal sensory neurons of rats can be accounted for entirely by activation of CCK-1 receptors and is not due to occupation of CCK-2 (gastrin) receptors, which also are expressed in the intestine and by some vagal afferent neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2005.06.003DOI Listing

Publication Analysis

Top Keywords

nodose ganglia
16
cck-1 receptors
16
oletf rats
16
cck-induced fos
12
fos expression
12
enteric vagal
12
rats
10
cck
9
hindbrain nodose
8
neurons
8

Similar Publications

The vagus nerves are important carriers of sensory information from the viscera to the central nervous system. Emerging evidence suggests that sensory signaling through the right, but not the left, vagus nerve evokes striatal dopamine release and reinforces appetitive behaviors. However, the extent to which differential gene expression within vagal sensory neurons contributes to this asymmetric reward-related signaling remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Adrenomedullin (ADM) is a neuropeptide that regulates blood pressure and vasodilation, particularly in females, but its effect on baroreflex afferent function is not well understood.
  • In a study with female rats, microinjection of ADM into the nodose ganglion led to a concentration-dependent reduction in blood pressure and varied responses in different neuron types, highlighting the differential effects on myelinated and unmyelinated neurons.
  • The findings suggest that ADM plays a critical role in mediating baroreflex responses related to hypotension and vasodilation, emphasizing the importance of gender differences in these processes.
View Article and Find Full Text PDF

The lung is densely innervated by sensory nerves, the majority of which are derived from the vagal sensory neurons. Vagal ganglia consist of two different ganglia, termed nodose and jugular ganglia, with distinct embryonic origins, innervation patterns, and physiological functions in the periphery. Since nodose neurons constitute the majority of the vagal ganglia, our understanding of the function of jugular nerves in the lung is very limited.

View Article and Find Full Text PDF

Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested.

View Article and Find Full Text PDF

Noninvasive closed-loop acoustic brain-computer interface for seizure control.

Theranostics

September 2024

Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Article Synopsis
  • The brain-computer interface (BCI) is crucial for advancing neuroscience and understanding brain functions, with non-invasive neuromodulation techniques playing a key role in innovations.
  • Researchers developed a new non-invasive closed-loop acoustic BCI (aBCI) that uses electroencephalography (EEG) to detect seizures and employs ultrasound to stimulate the vagus nerve, effectively stopping seizures in a rat model.
  • The aBCI selectively targets mechanosensitive neurons in the vagus nerve, shows significant effectiveness over conventional methods, and offers a promising and safe option for treating seizure disorders non-invasively.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!