Inhibition of tumor cell proliferation by thieno[2,3-d]pyrimidin-4(1H)-one-based analogs.

Bioorg Med Chem Lett

Chemical and Screening Sciences, Wyeth Research, Pearl River, NY 10965, USA.

Published: August 2005

On the basis of a screening lead from an assay using a pair of p21 isogenic cell lines (p21-proficient cells and p21-deficient cells) to identify chemoselective agents, a series of novel thieno[2,3-d]pyrimidin-4(1H)-one-based analogs was prepared. Some analogs inhibited the growth of human colon tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2005.05.127DOI Listing

Publication Analysis

Top Keywords

thieno[23-d]pyrimidin-41h-one-based analogs
8
inhibition tumor
4
tumor cell
4
cell proliferation
4
proliferation thieno[23-d]pyrimidin-41h-one-based
4
analogs basis
4
basis screening
4
screening lead
4
lead assay
4
assay pair
4

Similar Publications

The synthetic approach based on a sequence of Buchwald-Hartwig cross-coupling and annulation through intramolecular oxidative cyclodehydrogenation has been used for the construction of novel 4-alkyl-4-thieno[2',3':4,5]pyrrolo[2,3-]quinoxaline derivatives. For the first time, these polycyclic compounds were evaluated for antimycobacterial activity, including extensively drug-resistant strains. A reasonable bacteriostatic effect against HRv was demonstrated.

View Article and Find Full Text PDF

Thieno[2,3-d]pyrimidine fragment is not only bioistostere to quinazoline ring but also to purines which exist in nucleic acids responsible for several key biological processes of the living cells, thus it is of a great interest for many researchers. Thieno[2,3-d]pyrimidine ring has become an important scaffold for different compounds with versatile pharmacological activities including anticancer. These compounds exert their anticancer activity through variant mechanisms of action; one of these is the induction of different programmed cell death types as apoptosis and necroptosis which is an effective approach for cancer treatment.

View Article and Find Full Text PDF

Multiple signaling pathways have been reported to be altered in Myotonic Dystrophy type 1 (DM1) skeletal muscle, contributing to pathogenicity. In particular, previous work established that AMPK signaling, a key sensor of energy metabolism, is repressed in DM1 mouse muscle and that activating AMPK through exercise and/or with pharmacological activators is beneficial for the DM1 muscle phenotype. Here, we explored the effects of a newer, more specific allosteric AMPK activator acting directly on AMPK.

View Article and Find Full Text PDF

Mechanisms of Action Underlying Conductance-Modifying Positive Allosteric Modulators of the NMDA Receptor.

Mol Pharmacol

November 2024

Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia

N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate a slow, Ca-permeable component of excitatory neurotransmission. Modulation of NMDAR function has the potential for disease modification as NMDAR dysfunction has been implicated in neurodevelopment, neuropsychiatric, neurologic, and neurodegenerative disorders. We recently described the thieno[2,3-day]pyrimidin-4-one (EU1622) class of positive allosteric modulators, including several potent and efficacious analogs.

View Article and Find Full Text PDF

This study investigated the impact of LNP023 on the AMPK/mTOR signaling pathway in lupus nephritis (LN) and its effects on autophagy and oxidative stress. A mouse model of LN was established, and renal injury was confirmed by assessing various LN markers, including antinuclear antibody, ds-DNA, anti-Sm antibody, and others. Mice were treated with LNP023, the AMPK activator AICAR, or the AMPK inhibitor dorsomorphin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!