Antidepressant action of agomelatine (S 20098) in a transgenic mouse model.

Prog Neuropsychopharmacol Biol Psychiatry

Neuroscience, CHUL Research Centre, 2705 Laurier Boulevard, Ste-Foy, Québec, Canada G1V 4G2.

Published: July 2005

The aim of this study was to evaluate the efficacy of agomelatine (S 20098) to accelerate reversal of the neuroendocrinological, behavioural and cyclical changes seen in a transgenic mouse model of the neuroendocrine characteristics of depression. The effects of agomelatine were assessed in transgenic mice with low glucocorticoid receptor (GR) function, after acute stress or induced phase shift, and compared to desipramine and melatonin. Mice were injected 2 h before the onset of the dark period with agomelatine (10 mg/kg, i.p.), desipramine (10 mg/kg, i.p.), melatonin (10 mg/kg, i.p.) or vehicle (hydroxy-ethyl-cellulose (HEC) 1%) each day for 21 to 42 days. Agomelatine was effective in reversing the transgenic mouse behavioural changes noted in the Porsolt forced swim test as well as in the elevated plus maze. Both the number of open arm entries and the total time spent in open arms of the elevated plus maze is greatly increased in transgenic mice. The mean time spent in open arms is exquisitely sensitive to reversal by agomelatine and desipramine. Agomelatine also markedly accelerated readjustment of circadian cycles of temperature and activity following an induced phase shift. This action of agomelatine was superior to that of melatonin while desipramine was without effect. The accelerating effect of agomelatine was particularly notable if treatment was started 3 weeks prior to the induced phase shift. Agomelatine treatment did not cause any major change in corticosterone or adrenocorticotropic hormone (ACTH) concentrations nor in vasopressin (AVP), corticotropin-releasing hormone (CRH), GR and mineralocorticoid receptor (MR) mRNAs levels, which make it unlikely that the mechanism of agomelatine action is related to hypothalamic-pituitary-adrenocortical (HPA) axis changes. The present study shows that agomelatine displays some characteristics of antidepressant drug action in the transgenic mouse model, effects that could be partially related to its chronobiotic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2005.04.032DOI Listing

Publication Analysis

Top Keywords

transgenic mouse
16
agomelatine
12
mouse model
12
induced phase
12
phase shift
12
action agomelatine
8
agomelatine 20098
8
transgenic mice
8
elevated maze
8
time spent
8

Similar Publications

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

IL-35 modulates Tfh2 and Tfr cell balance to alleviate allergic rhinitis.

Inflamm Res

January 2025

Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.

Background: Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.

View Article and Find Full Text PDF

Purpose: Cardiomyocyte death is a major cytopathologic response in acute myocardial infarction (AMI) and involves complex inflammatory interactions. Although existing reports indicating that mixed lineage kinase domain-like protein (MLKL) is involved in macrophage necroptosis and inflammasome activation, the downstream mechanism of MLKL in necroptosis remain poorly characterized in AMI.

Methods: MLKL knockout mice (MLKL), RIPK3 knockout mice (RIPK3), and macrophage-specific MLKL conditional knockout mice (MLKL) were established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!