Previously, we found that intracellular reactive oxygen species (ROS) affect photomorphogenesis in Neurospora crassa. In this study, we investigated the physiological roles of ROS in the response to light and found that the exposure of mycelia to air was important for the light-induced carotenogenesis. Mycelia treated with a high concentration of O(2) gas and H(2)O(2) to release ROS showed an enhancement of light-induced carotenoid accumulation and the expression of gene related to light-inducible carotenogenesis. These results suggested that stimuli caused by the exposure of the mycelia to air containing O(2) gas triggered the light-induced carotenoid synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2005.06.014 | DOI Listing |
Int J Mol Sci
December 2024
Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
All--retinal (atRAL)-induced photoreceptor atrophy and retinal degeneration are hallmark features of dry age-related macular degeneration (AMD) and Stargardt disease type 1 (STGD1). The toxicity of atRAL is closely related to the generation of reactive oxygen species (ROS). Quercetin, a natural product, is known for its potent antioxidant properties; however, its effects in mitigating atRAL-mediated retinal damage remains unclear.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
Light-harvesting complex II (LHCII), the most abundant membrane protein in photosystem II, plays dual roles, i.e., efficient light harvesting and energy transfer to the reaction center under low light conditions and dissipating excess energy as heat to prevent photodamage under high irradiation conditions.
View Article and Find Full Text PDFPhotosynth Res
February 2025
Department of Biology, Washington University, St. Louis, MO, 63130, USA.
Excitation energy transfer between the photochemically active protein complexes is key for photosynthetic processes. Phototrophic organisms like cyanobacteria experience subtle changes in irradiance under natural conditions. Such changes need adjustments to the excitation energy transfer between the photosystems for sustainable growth.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Suzhou Laboratory, Suzhou, Jiangsu, China.
Fucoxanthin is a typical carotenoid that absorbs light in the blue region of the visible spectrum, and its detailed electronic structures remain to be clarified. It is well known that carotenoids harvest energy from sunlight and transfer it to chlorophylls (Chls) and/or bacteriochlorophylls (BChls) through its excited states as the intermediate states; however, some excited states still need evidence to be definitely confirmed. Through steady-state fluorescence emission spectroscopy and femtosecond time-resolved fluorescence up-conversion technique, we provide new evidence for the identification of the excited S state in fucoxanthin, a representative of carotenoids.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2024
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China. Electronic address:
Blue light simultaneously enhances anthocyanin and carotenoid biosynthesis in mango (Mangifera indica L.) fruit peel and flesh, respectively, but the mechanism remains unclear. In this study, two blue light-triggered zinc-finger transcription factors, MiBBX24 and MiBBX27, that positively regulate anthocyanin and carotenoid biosynthesis in mango fruit were identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!