There is a lack of animal models of traumatic brain injury (TBI) that adequately simulate the longterm changes in intracranial pressure (ICP) increase following clinical TBI. We therefore reproduced the clinical scenario in an animal model of TBI and studied long-term postinjury changes in ICP and indices of brain injury. After induction of anesthesia, juvenile piglets were randomly traumatized using fluid-percussion injury (FPI) to induce either moderate (mTBI = 6 pigs: 3.2 +/- 0.6 atm) or severe (sTBI = 7 pigs: 4.1 +/- 1.0 atm) TBI. Injury was followed by a 30% withdrawal of blood volume. ICP and systemic hemodynamic were monitored continuously. Repeated measurements of global cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) were performed at baseline, at the end of blood withdrawal, after volume replacement, and at 8 and 24 h postinjury. Histological and immunocytochemical studies have also performed. ICP peaked immediately following FPI (mTBI: 33 +/- 16 mm Hg; sTBI: 47 +/- 14 mm Hg, p < 0.05) in both groups. In the sTBI group, we noted a second peak at 5 +/- 1.5 h postinjury. This second ICP peak was accompanied by a 50% reduction in CBF (44 +/- 31 mL . min . 100 g(-1)) and CMRO(2) (2.5 +/- 2.0 mL . min . 100 g(1)). Moderate TBI typically resulted in focal pathological change whereas sTBI caused more diffuse change, particularly in terms of the ensuing axonal damage. We thus describe an animal model of severe TBI with a reproducible secondary ICP increase accompanied by patterns of diffuse brain damage. This model may be helpful in the study of pathogenetic relevance of concomitant affections and verify new therapeutic approaches in severe TBI.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2005.22.807DOI Listing

Publication Analysis

Top Keywords

brain injury
12
intracranial pressure
8
traumatic brain
8
icp increase
8
animal model
8
pigs +/-
8
+/- atm
8
+/- min
8
min 100
8
severe tbi
8

Similar Publications

Concussions are a common form of mild traumatic brain injury characterized by a transient alteration of cerebral function leading to a range of physical, cognitive, and emotional symptoms. Postconcussive symptoms (PCSs) usually resolve in about a week but can persist in 10% to 15% of patients. If left untreated, PCS can profoundly affect a patient's life.

View Article and Find Full Text PDF

Liposomes-Loaded miR-9-5p Alleviated Hypoxia-Ischemia-Induced Mitochondrial Oxidative Stress by Targeting ZBTB20 to Inhibiting Nrf2/Keap1 Interaction in Neonatal Mice.

Antioxid Redox Signal

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.

Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.

View Article and Find Full Text PDF

Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord.

View Article and Find Full Text PDF

Background: The pathomechanism of blast traumatic brain injury (TBI) and blunt TBI is different. In blast injury, evidence indicates that a single blast exposure can often manifest long-term neurological impairments. However, its pathomechanism is still elusive, and treatments have been symptomatic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!