In this study, we have characterized a panel of NSCLC cell lines with differential sensitivity to gefitinib for activating mutations in egfr, pik3ca, and k-ras, and basal protein expression levels of PTEN. The egfr mutant NSCLC cell line H1650 as well as the egfr wild type cell lines H292 and A431 were highly sensitive to gefitinib treatment, indicating that other factors determine gefitinib-sensitivity in egfr wild type cells. Activating k-ras mutations were specifically detected in gefitinib-resistant cells, suggesting that the occurrence of k-ras mutations is correlated with resistance to EGFR antagonists. No pik3ca mutations were detected within the panel of cell lines, and PTEN protein expression levels did not correlate with gefitinib sensitivity. Gefitinib effectively blocked Akt and Erk phosphorylation in two gefitinib-sensitive NSCLC cell lines, further supporting our previous findings that persistent activity of the PI3K/Akt and/or Ras/Erk pathways is associated with gefitinib-resistance of NSCLC cell lines. Gefitinib-resistant NSCLC cell lines, showing EGFR-independent activity of the PI3K/Akt or Ras/Erk pathways, were treated with gefitinib in combination with specific inhibitors of mTOR, P13K, Ras, and MEK. Additive cytotoxicity was observed in A549 cells co-treated with gefitinib and the MEK inhibitor U0126 or the farnesyl transferase inhibitor SCH66336 and in H460 cells treated with gefitinib and the PI3K inhibitor LY294002, but not in H460 cells treated with gefitinib and rapamycin. These data suggest that combination treatment of NSCLC cells with gefitinib and specific inhibitors of the PI3K/Akt and Ras/Erk pathways may provide a successful strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.21290DOI Listing

Publication Analysis

Top Keywords

cell lines
24
nsclc cell
20
specific inhibitors
12
ras/erk pathways
12
treated gefitinib
12
gefitinib
10
gefitinib specific
8
cell
8
sensitivity gefitinib
8
protein expression
8

Similar Publications

Discovery of noncovalent diaminopyrimidine-based Inhibitors for glioblastoma via a dual FAK/DNA targeting strategy.

Eur J Med Chem

January 2025

School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:

Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.

View Article and Find Full Text PDF

Ginseng and its processed products are valued as health foods for their nutritional benefits. The traditional forms of processed ginseng include white ginseng, dali ginseng (DLG), red ginseng (RG), and black ginseng (BG). However, the impact of processing on the chemical composition and anti-tumor efficacy of these products is not well understood.

View Article and Find Full Text PDF

Many lines of evidence suggest that circular RNAs (circRNAs) are closely associated with the occurrence and progression of colon cancer. The objective of this study was to investigate the regulatory effects and mechanisms of circ_0075829 on ferroptosis and immune escape in colon cancer. We utilized colon cancer cell lines and a xenograft mouse model to analyze the function of circ_0075829 in vitro and in vivo.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) has high mortality. The role and regulatory mechanism of hsa_circ_0021727 (circ_0021727) in ESCC remain largely unknown. This study focused on the undiscovered impact of circ_0021727 on cell cycle progression, apoptosis, and angiogenesis of ESCC.

View Article and Find Full Text PDF

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!