Objective: To determine the effect of residence-based, resistance exercise training (RET) on affected skeletal muscle size and glucose tolerance after long-standing, complete spinal cord injury (SCI).
Design: Before-after trial.
Setting: University laboratory trial.
Participants: Five men with chronic, complete SCI (C5-T9).
Intervention: Magnetic resonance images of the thighs and an oral glucose tolerance test were performed before and after RET. Subjects performed RET with both thighs, 2 d/wk for 4 sets of 10 unilateral, dynamic knee extensions for 12 weeks. Neuromuscular electric stimulation induced RET by activating the knee extensors.
Main Outcome Measures: Quadriceps femoris muscle cross-sectional area (CSA), plasma glucose, and insulin concentrations were measured before and after RET. Results Skeletal muscle CSA increased by 35% in the right quadriceps femoris (from 32.6 cm2 to 44.0 cm2) and by 39% in the left quadriceps femoris (from 34.6 cm2 to 47.9 cm2) as a result of training (P < .05). There were no significant changes in blood glucose or insulin after training. However, a trend for a reduction in plasma glucose levels was observed (P = .074). Conclusions Affected skeletal muscle can achieve substantial hypertrophy years after SCI with resistance exercise. Furthermore, our results suggest that this type of training may enhance glucose disposal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apmr.2004.12.021 | DOI Listing |
Nutr Metab (Lond)
December 2024
College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang Province, China.
Objective: Impaired skeletal muscle glycogen synthesis contributes to insulin resistance (IR). Aerobic exercise reported to ameliorate IR by augmenting insulin signaling, however the detailed mechanism behind this improvement remains unclear. This study investigated whether aerobic exercise enhances glycogen anabolism and insulin sensitivity via EGR-1/PTP1B signaling pathway in skeletal muscle of rats.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
Background/aim: Body weight loss (BWL) after gastrectomy for gastric cancer (GC) decreases postoperative quality of life and survival in patients with GC. This study aimed to evaluate the effect of oral nutritional supplements composed of high protein on BWL in the early period following gastrectomy.
Patients And Methods: Pre- and postoperative body weight and skeletal muscle mass were measured using bioelectrical impedance analysis in patients undergoing radical gastrectomy for GC and analyzed retrospectively.
In Vivo
December 2024
Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan;
Background/aim: Lactate is a physiologically active substance secreted by skeletal muscle that has been suggested to stimulate muscle mass gain. However, the molecular mechanism for lactate-associated muscle hypertrophy remains unclear. The purpose of the present study was to investigate whether oral administration of lactate increases muscle mass under different loading conditions.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Practical Pharmacy, Nihon Pharmaceutical University, Saitama, Japan
Background/aim: Cancer cachexia is characterized by weight loss with a specific decrease in skeletal muscle and adipose tissue. In Japan, anamorelin, which has a novel mechanism of action, was approved in 2021 for the treatment of cancer cachexia. However, little information is available on its safety in routine clinical care, in particular the occurrence of conduction defects as adverse reactions.
View Article and Find Full Text PDFPLoS One
December 2024
eVida Research Lab, Faculty of Engineering, University of Deusto, Deusto, Spain.
Background: Sarcopenia and reduced muscle quality index have garnered special attention due to their prevalence among older individuals and the adverse effects they generate. Early detection of these geriatric pathologies holds significant potential, enabling the implementation of interventions that may slow or reverse their progression, thereby improving the individual's overall health and quality of life. In this context, artificial intelligence opens up new opportunities to identify the key identifying factors of these pathologies, thus facilitating earlier intervention and personalized treatment approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!