The major histocompatibility complex (MHC) is present at a single chromosomal locus of all jawed vertebrate analyzed so far, from sharks to mammals, except for teleosts whose orthologs of the mammalian MHC-encoded genes are dispersed at several chromosomal loci. Even in teleosts, several class IA genes and those genes directly involved in class I antigen presentation preserve their linkage, defining the teleost MHC class I region. We determined the complete nucleotide sequence of the MHC class I region of the inbred HNI strain of medaka, Oryzias latipes (northern Japan population-derived), from four overlapping bacterial artificial chromosome (BAC) clones spanning 540,982 bp, and compared it with the published sequence of the corresponding region of the inbred Hd-rR strain of medaka (425,935 bp, southern Japan population-derived) as the first extensive study of intraspecies polymorphisms of the ectotherm MHC regions. A segment of about 100 kb in the middle of the compared sequences encompassing two class Ia genes and two immunoproteasome subunit genes, PSMB8 and PSMB10, was so divergent between these two inbred strains that a reliable sequence alignment could not be made. The rest of the compared region (about 320 kb) showed a fair correspondence, and an approximately 96% nucleotide identity was observed upon gap-free segmental alignment. These results indicate that the medaka MHC class I region contains an approximately 100-kb polymorphic core, which is most probably evolving adaptively by accumulation of point mutations and extensive genetic rearrangements such as insertions, deletions, and duplications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00251-005-0009-xDOI Listing

Publication Analysis

Top Keywords

mhc class
16
class region
16
medaka oryzias
8
oryzias latipes
8
class genes
8
region inbred
8
strain medaka
8
japan population-derived
8
class
7
mhc
6

Similar Publications

Mutations or homozygous deletions of MHC class II (MHC-II) genes are commonly found in B cell lymphomas that develop in immune-privileged sites and have been associated with patient survival. However, the mechanisms regulating MHC-II expression, particularly through genetic and epigenetic factors, are not yet fully understood. In this study, we identified a key signaling pathway involving the histone H2AK119 deubiquitinase BRCA1 associated protein 1 (BAP1), the interferon regulatory factor interferon regulatory factor 1 (IRF1), and the MHC-II transactivator class II transactivator (CIITA), which directly activates MHC-II gene expression.

View Article and Find Full Text PDF

Cell type-specific upregulation of NKG2D ligand MICA in response to APTO253.

Ann Transl Med

December 2024

Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.

One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by severe liver inflammation and fibrosis due to an imbalanced immune response caused by enhanced bacterial components. The progression of MASH is closely linked to increased permeability of intestinal mucosal barrier facilitating enter of bacterial components into hepatic portal venous system. B cells are important immune cells for adaptive responses and enhance hepatic inflammation through cytokine production and T cell activation.

View Article and Find Full Text PDF

Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.

View Article and Find Full Text PDF

Tumor-specific HLA class I expression is required for cytotoxic T-cell elimination of cancer cells expressing tumor-associated or neo-antigens. Cancers downregulate antigen presentation to avoid adaptive immunity. The highly polymorphic nature of the genes encoding these proteins, coupled with quaternary-structure changes after formalin fixation, complicate detection by immunohistochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!