Acute hyperglycemia and the innate immune system: clinical, cellular, and molecular aspects.

Crit Care Med

Department of Surgery, the Price Institute of Surgical Research, University of Louisville School of Medicine, University of Louisville Hospital, Louisville, KY, USA.

Published: July 2005

Objective: To extract from the biomedical literature the reported effects of acute hyperglycemia on the major components of the innate immune system and to describe the clinical benefits of strict blood glucose control in certain patients.

Data Source And Selection: A Medline/PubMed search (1966 to July 2004) with manual cross-referencing was conducted, including all relevant articles investigating the effects of acutely elevated glucose levels on innate immunity. All publication types, languages, or subsets were searched.

Data Extraction And Synthesis: Original and selected review articles, short communications, letters to the editor, and chapters of selected textbooks were extracted. Most recent and relevant clinical trials were reviewed for the introductory section to provide the clinical background to this topic. The selected bench laboratory articles were then divided into three main categories based on the timing of events: a) the early phase of the innate immune reaction; b) the cytokine network; and c) the phagocytic phase. The most obvious findings related to hyperglycemia included reduced neutrophil activity (e.g., chemotaxis, formation of reactive oxygen species, phagocytosis of bacteria), despite accelerated diapedesis of leukocytes into peripheral tissue, as well as specific alterations of cytokine patterns with increased concentrations of the early proinflammatory cytokines tumor necrosis factor-alpha and interleukin-6. Furthermore, a reduction of endothelial nitric oxide formation takes place, thus decreasing microvascular reactivity to dilating agents such as bradykinin, and complement function (e.g., opsonization, chemotaxis) is impaired, despite elevations of certain complement factors.

Conclusions: Acute, short-term hyperglycemia affects all major components of innate immunity and impairs the ability of the host to combat infection, even though certain distinctive proinflammatory alterations of the immune response can be observed under these conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.ccm.0000170106.61978.d8DOI Listing

Publication Analysis

Top Keywords

innate immune
12
acute hyperglycemia
8
immune system
8
hyperglycemia major
8
major components
8
components innate
8
innate immunity
8
innate
5
hyperglycemia innate
4
immune
4

Similar Publications

A cytokine storm is marked by excessive pro-inflammatory cytokine release, and has emerged as a key factor in severe COVID-19 cases - making it a critical therapeutic target. However, its pathophysiology was poorly understood, which hindered effective treatment. SARS-CoV-2 initially disrupts angiotensin signalling, promoting inflammation through ACE-2 downregulation.

View Article and Find Full Text PDF

Nanoparticle-based Drug Delivery Systems to Modulate Tumor Immune Response for Glioblastoma Treatment.

Acta Biomater

January 2025

School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644005, China. Electronic address:

Glioblastoma (GBM) is a primary central nervous system neoplasm, characterized by a grim prognosis and low survival rates. This unfavorable therapeutic outcome is partially attributed to the inadequate immune infiltration and an immunosuppressive microenvironment, which compromises the effectiveness of conventional radiotherapy and chemotherapy. To this end, precise modulation of cellular dynamics in the immune system has emerged as a promising approach for therapeutic intervention.

View Article and Find Full Text PDF

Ageing is a major risk factor for neurodegenerative diseases like Alzheimer's disease (AD). Microglia, as the principal innate immune cells within the brain, exert homeostatic and active immunological defense functions throughout human lifespan. The age-related dysfunction of microglia is currently recognized as a pivotal trigger for brain diseases associated with aging.

View Article and Find Full Text PDF

Photochemical bomb: Precision nuclear targeting to activate cGAS-STING pathway for enhanced bladder cancer immunotherapy.

Biomaterials

January 2025

Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China; Department of Urology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China. Electronic address:

Activating the cGAS-STING pathway presents a promising strategy to enhance the innate immunity and combat the immunosuppressive tumor microenvironment. One key mechanism for triggering this pathway involves the release of damaged DNA fragments caused by nuclear DNA damage. However, conventional cGAS-STING agonists often suffer from limited nucleus-targeting efficiency and potential biotoxicity.

View Article and Find Full Text PDF

Objective: Reactivity of microglia, the resident cells of the brain, underlies innate immune mechanisms (e.g., injury repair), and disruption of microglial reactivity has been shown to facilitate psychiatric disorder dysfunctions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!