Distal sensory polyneuropathy (DSP) is currently the most common neurological complication of HIV infection in the developed world and is characterized by sensory neuronal injury accompanied by inflammation, which is clinically manifested as disabling pain and gait instability. We previously showed that feline immunodeficiency virus (FIV) infection of cats caused DSP together with immunosuppression in cats, similar to that observed in HIV-infected humans. In this study, we investigated the pathogenic mechanisms underlying the development of FIV-induced DSP using feline dorsal root ganglia (DRG) cultures, consisting of neurons, Schwann cells, and macrophages. FIV-infected cultures exhibited viral Ags (p24 and envelope) in macrophages accompanied by neuronal injury, indicated by neurite retraction, neuronal loss and decreased soma size, compared with mock-infected (control) cultures. FIV infection up-regulated inducible NO synthase (iNOS), STAT-1, and TNF-alpha mRNA levels in DRG cultures. Increased STAT-1 and iNOS mRNA levels were also observed in DRGs from FIV-infected animals relative to mock-infected controls. Similarly, immunolabeling studies of DRGs from FIV-infected animals showed that macrophages were the principal sources of STAT-1 and iNOS protein production. The iNOS inhibitor aminoguanidine reduced nitrotyrosine and protein carbonyl levels, together with preventing neuronal injury in FIV-infected DRG cultures. The present studies indicate that FIV infection of DRGs directly contributes to axonal and neuronal injury through a mechanism involving macrophage immune activation, which is mediated by STAT-1 and iNOS activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.175.2.1118 | DOI Listing |
PLoS Genet
January 2025
Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
Some animals can regenerate large missing regions of their nervous system, requiring mechanisms to restore the pattern, numbers, and wiring of diverse neuron classes. Because injuries are unpredictable, regeneration must be accomplished from an unlimited number of starting points. Coordinated regeneration of neuron-glia architecture is thus a major challenge and remains poorly understood.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Biology, Appalachian State University, Boone, North Carolina, United States.
Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity.
View Article and Find Full Text PDFClin Sci (Lond)
January 2025
Zhengzhou University First Affiliated Hospital, Zhengzhou, China.
Neddylation is a process of attaching neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to substrates for the protein function modulation via enzymatic cascades involving NEDD8-activating enzyme (E1), NEDD8-conjugating enzyme (E2), and NEDD8 ligase (E3). Defective in cullin neddylation 1 (DCN1) serves as a co-E3 ligase, that can simultaneously bind E2 UBE2M and cullin proteins to stabilize the catalytic center of the Cullin-Ring E3 ligase (CRL) complex, thereby promoting cullin neddylation. Neddylation is reported to be activated in diverse human diseases, and inhibition of protein neddylation has been regarded as a promising anticancer therapy.
View Article and Find Full Text PDFCell Death Dis
January 2025
Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.
Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!