Coordinated spacing and patterning of stomata allow efficient gas exchange between plants and the atmosphere. Here we report that three ERECTA (ER)-family leucine-rich repeat-receptor-like kinases (LRR-RLKs) together control stomatal patterning, with specific family members regulating the specification of stomatal stem cell fate and the differentiation of guard cells. Loss-of-function mutations in all three ER-family genes cause stomatal clustering. Genetic interactions with a known stomatal patterning mutant too many mouths (tmm) revealed stoichiometric epistasis and combination-specific neomorphism. Our findings suggest that the negative regulation of ER-family RLKs by TMM, which is an LRR receptor-like protein, is critical for proper stomatal differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1109710 | DOI Listing |
Tree Physiol
January 2025
Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Xinjiang Production & State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar 843300, China.
The transcription factors in the ABA Response Element Binding (AREB) protein family were differentially regulated under multiple stress conditions; however, functional analyses of AREB in Oliv. had not been conducted previously. In the present study, the comprehensive identification of the gene family and the function of in response to drought stress in were elucidated.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
Vegetation assimilation of atmospheric gaseous elemental mercury (GEM) represents the largest dry deposition pathway in global terrestrial ecosystems. This study investigated Hg accumulation mechanisms in deciduous broadleaves and evergreen needles, focusing on how ecophysiological strategies─reflected by δC, δO, leaf mass per area, and leaf dry matter content-mediated Hg accumulation. Results showed that deciduous leaves exhibited higher total Hg (THg) concentrations and accumulation rates (THg), which were 85.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Lower atmospheric pressure affects biologically relevant physical parameters such as gas partial pressure and concentration, leading to increased water vapor diffusivity and greater soil water content loss through evapotranspiration. This might impact plant photosynthetic activity, resource allocation, water relations, and growth. However, the direct impact of low air pressure on plant physiology is largely unknown.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czechia.
To identify novel genes engaged in plant epidermal development, we characterized the phenotypic variability of rosette leaf epidermis of 310 sequenced Arabidopsis thaliana accessions, focusing on trichome shape and distribution, compositional characteristics of the trichome cell wall, and histologically detectable metal ion distribution. Some of these traits correlated with cLimate parameters of our accession's locations of origin, suggesting environmental selection. A novel metal deposition pattern in stomatal guard cells was observed in some accessions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!