Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Structural materials in nature exhibit remarkable designs with building blocks, often hierarchically arranged from the nanometer to the macroscopic length scales. We report on the structural properties of biosilica observed in the hexactinellid sponge Euplectella sp. Consolidated, nanometer-scaled silica spheres are arranged in well-defined microscopic concentric rings glued together by organic matrix to form laminated spicules. The assembly of these spicules into bundles, effected by the laminated silica-based cement, results in the formation of a macroscopic cylindrical square-lattice cagelike structure reinforced by diagonal ridges. The ensuing design overcomes the brittleness of its constituent material, glass, and shows outstanding mechanical rigidity and stability. The mechanical benefits of each of seven identified hierarchical levels and their comparison with common mechanical engineering strategies are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1112255 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!