Transition metals block the muscle Cl- channel ClC-1, which belongs to a large family of double-barreled Cl- channels and transporters. In the Torpedo Cl- channel ClC-0, Zn2+ block is closely related to the common gating mechanism that opens and closes both pores of the channel simultaneously, and the mutation C212S, which locks the common gate open, also eliminates the block. In ClC-1, however, previous results suggested that Zn2+ block is independent of gating, and that the cysteine residues involved in Zn2+ binding are in different positions to those that confer Zn2+ sensitivity on ClC-0. In this work, we show that Zn2+ block of ClC-1 is faster at hyperpolarized potentials where the channel is more likely to be in the closed state. Mutation C277S, equivalent to C212S in ClC-0, which locks the common gate in ClC-1 open, virtually eliminates Zn2+ block. A mutation, V321A, which reduces open probability of the common gate, facilitated Zn2+ block. These results demonstrate that Zn2+ block is state dependent, acting on the common gate. The extent of the block, however, is not a simple function of the open probability of the common gate. The Q10 of approximately 13 of the time course of Zn2+ block, which is significantly higher than the Q10 of common gating transitions in WT ClC-1, suggests that Zn2+ binds to a very high temperature-dependent low-probability closed substate of the common gate, which has not yet been characterized in this channel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1474776 | PMC |
http://dx.doi.org/10.1113/jphysiol.2005.091777 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!