In vitro and in vivo antitumor activity of the NF-kappaB inhibitor DHMEQ in the human T-cell leukemia virus type I-infected cell line, HUT-102.

Leuk Res

Division of Microbiology and Genetics, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.

Published: January 2006

Adult T-cell leukemia (ATL) is an aggressive neoplasm caused by human T-cell leukemia virus type I (HTLV-I). The NF-kappaB pathway is activated in ATL cells and in virus-infected cells, and plays a central role in oncogenesis. We examined the effect of the novel NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), on a well-characterized HTLV-I-infected cell line, HUT-102, in vitro and in vivo. DHMEQ inhibited translocation of NF-kappaB p65 to the nucleus and induced apoptotic cell death in vitro. In vivo, DHMEQ inhibited the growth and infiltration of HUT-102 tumor cells transplanted subcutaneously in SCID mice lacking natural killer cell activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.leukres.2005.06.001DOI Listing

Publication Analysis

Top Keywords

vitro vivo
12
t-cell leukemia
12
nf-kappab inhibitor
8
human t-cell
8
leukemia virus
8
virus type
8
cell hut-102
8
vivo dhmeq
8
dhmeq inhibited
8
vivo antitumor
4

Similar Publications

Studying the molecular basis of intestinal infections caused by enteric pathogens at the tissue level is challenging, because most human intestinal infection models have limitations, and results obtained from animals may not reflect the human situation. Infections with Salmonella enterica serovar Typhimurium (STm) have different outcomes between organisms. 3D tissue modeling of primary human material provides alternatives to animal experimentation, but epithelial co-culture with immune cells remains difficult.

View Article and Find Full Text PDF

Impairment of gut barrier integrity is associated with the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease, colorectal cancer, and coeliac disease. While many aspects of diet have been linked to improved barrier function, (poly)phenols, a broad group of bioactive phytochemicals, are of potential interest. The (poly)phenolic sub-class, flavan-3-ols, have been investigated in some detail owing to their abundance in commonly consumed foods, including grapes, tea, apples, cocoa, berries, and nuts.

View Article and Find Full Text PDF

Photothermal Coating on Zinc Alloy for Controlled Biodegradation and Improved Osseointegration.

Adv Sci (Weinh)

January 2025

Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.

Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.

View Article and Find Full Text PDF

Background: Peyronie's disease (PD) is a fibrotic disorder affecting the penile tunica albugínea, with unclear pathophysiology despite centuries of recognition.

Aim: This scoping review maps the effects of interventions in basic PD research, synthesizing evidence from in vivo and in vitro studies to guide future investigation.

Methods: In October-November 2023, a systematic search was conducted across PubMed, Embase (Ovid), Science of Web, and Scopus, following SRYCLE's guidelines.

View Article and Find Full Text PDF

Development of a bacteria-nanosapper for the active delivery of ZIF-8 particles containing therapeutic genes for cancer immune therapy.

Acta Pharm Sin B

December 2024

School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.

Specific tumor-targeted gene delivery remains an unsolved therapeutic issue due to aberrant vascularization in tumor microenvironment (TME). Some bacteria exhibit spontaneous chemotaxis toward the anaerobic and immune-suppressive TME, which makes them ideal natural vehicles for cancer gene therapy. Here, we conjugated ZIF-8 metal-organic frameworks encapsulating eukaryotic murine interleukin 2 () expression plasmid onto the surface of VNP20009, an attenuated strain with well-documented anti-cancer activity, and constructed a TME-targeted delivery system named /ZIF-8@.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!