In this study, we investigated the role of acyl-coenzyme A:diacylglycerol acyltransferase 2 (DGAT2) in glucose and lipid metabolism in obese mice by reducing its expression in liver and fat with an optimized antisense oligonucleotide (ASO). High-fat diet-induced obese (DIO) C57BL/6J mice and ob/ob mice were treated with DGAT2 ASO, control ASO, or saline. DGAT2 ASO treatment reduced DGAT2 messenger RNA (mRNA) levels by more than 75% in both liver and fat but did not change DGAT1 mRNA levels in either of these tissues, which resulted in decreased DGAT activity in liver but not in fat. DGAT2 ASO treatment did not cause significant changes in body weight, adiposity, metabolic rate, insulin sensitivity, or skin microstructure. However, DGAT2 ASO treatment caused a marked reduction in hepatic triglyceride content and improved hepatic steatosis in both models, which was consistent with a dramatic decrease in triglyceride synthesis and an increase in fatty acid oxidation observed in primary mouse hepatocytes treated with DGAT2 ASO. In addition, the treatment lowered hepatic triglyceride secretion rate and plasma triglyceride levels, and improved plasma lipoprotein profile in DIO mice. The positive effects of the DGAT2 ASO were accompanied by a reduction in the mRNA levels of several hepatic lipogenic genes, including SCD1, FAS, ACC1, ACC2, ATP-citrate lyase, glycerol kinase, and HMG-CoA reductase. In conclusion, reduction of DGAT2 expression in obese animals can reduce hepatic lipogenesis and hepatic steatosis as well as attenuate hyperlipidemia, thereby leading to an improvement in metabolic syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hep.20783 | DOI Listing |
Cell Rep
October 2024
Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Electronic address:
Inhibition of the ceramide synthetic pathway with myriocin or an antisense oligonucleotide (ASO) targeting dihydroceramide desaturase (DES1) both improved hepatic insulin sensitivity in rats fed either a saturated or unsaturated fat diet and was associated with reductions in both hepatic ceramide and plasma membrane (PM)-sn-1,2-diacylglycerol (DAG) content. The insulin sensitizing effects of myriocin and Des1 ASO were abrogated by acute treatment with an ASO against DGAT2, which increased hepatic PM-sn-1,2-DAG but not hepatic C16 ceramide content. Increased PM-sn-1,2-DAG content was associated with protein kinase C (PKC)ε activation, increased insulin receptor (INSR) phosphorylation leading to reduced insulin-stimulated INSR/Akt phosphorylation, and impaired insulin-mediated suppression of endogenous glucose production.
View Article and Find Full Text PDFJ Lipid Res
June 2012
Cardiovascular and Metabolic Disease Research and Community of Research Excellence and Advanced Technology, Janssen Pharmaceutical Companies of Johnson and Johnson, Spring House, PA 19477, USA.
Diacylglycerol acyltransferase (DGAT) catalyzes the final step in triglyceride (TG) synthesis. There are two isoforms, DGAT1 and DGAT2, with distinct protein sequences and potentially different physiological functions. To date, the ability to determine clear functional differences between DGAT1 and DGAT2, especially with respect to hepatic TG synthesis, has been elusive.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
August 2008
Department of Antisense Drug Discovery, Isis Pharmaceuticals, 1896 Rutherford Rd., Carlsbad, CA 92008, USA.
To investigate the role of JNK1 in metabolism, male ob/ob and diet-induced obese mice were treated with a JNK1-specific antisense oligonucleotide (ASO) or control ASO at 25 mg/kg or saline twice/wk for 6 and 7 wk, respectively. JNK1 ASO reduced JNK1 mRNA and activity by 65-95% in liver and fat tissues in both models. Compared with controls, treatment with JNK1 ASO did not change food intake but lowered body weight, fat pad weight, and whole body fat content.
View Article and Find Full Text PDFBiochim Biophys Acta
March 2008
Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104-6160, USA.
Acyl-CoA:diacylglycerol acyltransferases (DGATs) are enzymes that catalyze the formation of triglyceride (TG) from acyl-CoA and diacylglycerol. Two DGATs have been identified which belong to two distinct gene families and both are ubiquitously expressed. DGAT2 knockout mice are lipopenic and die shortly after birth.
View Article and Find Full Text PDFJ Biol Chem
August 2007
Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
Nonalcoholic fatty liver disease (NAFLD) is a major contributing factor to hepatic insulin resistance in type 2 diabetes. Diacylglycerol acyltransferase (Dgat), of which there are two isoforms (Dgat1 and Dgat2), catalyzes the final step in triglyceride synthesis. We evaluated the metabolic impact of pharmacological reduction of DGAT1 and -2 expression in liver and fat using antisense oligonucleotides (ASOs) in rats with diet-induced NAFLD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!