Differentiation of activated satellite cells in denervated muscle following single fusions in situ and in cell culture.

Histochem Cell Biol

Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109-0616, USA.

Published: July 2005

Satellite cells represent a cellular source of regeneration in adult skeletal muscle. It remains unclear why a large pool of stem myoblasts in denervated muscle does not compensate for the loss of muscle mass during post-denervation atrophy. In this study, we present evidence that satellite cells in long-term denervated rat muscle are able to activate synthesis of contractile proteins after single fusions in situ. This process of early differentiation leads to formation of abnormally diminutive myotubes. The localization of such dwarf myotubes beneath the intact basal lamina on the surface of differentiated muscle fibers shows that they form by fusion of neighboring satellites or by the progeny of a single satellite cell following one or two mitotic divisions. We demonstrated single fusions of myoblasts using electron microscopy, immunocytochemical labeling and high resolution confocal digital imaging. Sequestration of nascent myotubes by the rapidly forming basal laminae creates a barrier that limits further fusions. The recruitment of satellite cells in the formation of new muscle fibers results in a progressive decrease in their local densities, spatial separation and ultimate exhaustion of the myogenic cell pool. To determine whether the accumulation of aberrant dwarf myotubes is explained by the intrinsic decline of myogenic properties of satellite cells, or depends on their spatial separation and the environment in the tissue, we studied the fusion of myoblasts isolated from normal and denervated muscle in cell culture. The experiments with a culture system demonstrated that the capacity of myoblasts to synthesize contractile proteins without serial fusions depended on cell density and the availability of partners for fusion. Satellite cells isolated from denervated muscle and plated at fusion-permissive densities progressed through the myogenic program and actively formed myotubes, which shows that their myogenic potential is not considerably impaired. The results of this study suggest that under conditions of denervation, progressive spatial separation and confinement of many satellite cells within the endomysial tubes of atrophic muscle fibers and progressive interstitial fibrosis are the important factors that prevent their normal differentiation. Our findings also provide an explanation of why denervated muscle partially and temporarily is able to restore its functional capacity following injury and regeneration: the release of satellite cells from their sublaminal location provides the necessary space for a more active regenerative process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-005-0012-1DOI Listing

Publication Analysis

Top Keywords

satellite cells
32
denervated muscle
20
single fusions
12
muscle fibers
12
spatial separation
12
muscle
11
satellite
9
cells
8
fusions situ
8
cell culture
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!