While several studies have suggested that bacterium-phytoplankton interactions have the potential to dramatically influence harmful algal bloom dynamics, little is known about how bacteria and phytoplankton communities interact at the species composition level. The objective of the current study was to determine whether there are specific associations between diverse phytoplankton and the bacteria that co-occur with them. We determined the phylogenetic diversity of bacterial assemblages associated with 10 Alexandrium strains and representatives of the major taxonomic groups of phytoplankton in the Gulf of Maine. For this analysis we chose xenic phytoplankton cultures that (i) represented a broad taxonomic range, (ii) represented a broad geographic range for Alexandrium spp. isolates, (iii) grew under similar cultivation conditions, (iv) had a minimal length of time since the original isolation, and (v) had been isolated from a vegetative phytoplankton cell. 16S rRNA gene fragments of most Bacteria were amplified from DNA extracted from cultures and were analyzed by denaturing gradient gel electrophoresis and sequencing. A greater number of bacterial species were shared by different Alexandrium cultures, regardless of the geographic origin, than by Alexandrium species and nontoxic phytoplankton from the Gulf of Maine. In particular, members of the Roseobacter clade showed a higher degree of association with Alexandrium than with other bacterial groups, and many sequences matched sequences reported to be associated with other toxic dinoflagellates. These results provide evidence for specificity in bacterium-phytoplankton associations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1169014 | PMC |
http://dx.doi.org/10.1128/AEM.71.7.3483-3494.2005 | DOI Listing |
Mol Biol Evol
January 2025
Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
A key trait of Eukarya is the independent evolution of complex multicellular (CM) in animals, plants, fungi, brown algae and red algae. This phenotype is characterized by the initial exaptation of cell-cell adhesion genes followed by the emergence of mechanisms for cell-cell communication, together with the expansion of transcription factor gene families responsible for cell and tissue identity. The number of cell types (NCT) is commonly used as a quantitative proxy for biological complexity in comparative genomics studies.
View Article and Find Full Text PDFFront Immunol
January 2025
Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
Background: Shell and pearl formation in bivalves is a sophisticated biomineralization process that encompasses immunological and mineralization aspects, particularly during shell repair and the initial stages of pearl cultivation when a nucleus is inserted. Here, we describe a novel C-type lectin, HcLec1, isolated and characterized from the freshwater pearl mussel Lea.
Methods: Immune challenge, RNA interference (RNAi) experiments, ELISA, and antibacterial assays were employed to investigate the role of HcLec1 in innate immunity.
PhytoKeys
January 2025
Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing 100081, China.
(Acoraceae) is a commonly used seasoning in southern China. It was previously misidentified as (Yamam.) F.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Zoology, Patan Multiple Campus, Tribhuvan University, Lalitpur, Bagmati, 0097, Nepal.
Background: spp. hold significant potential as biocontrol agents in agriculture due to their antagonistic properties against plant pathogens. The study aimed to characterize and identify isolates from rhizospheric regions of vegetable crops.
View Article and Find Full Text PDFTrop Biomed
December 2024
Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai District, Mahasarakham 44150, Thailand.
The deer fly (Diptera, Tabanidae), Chrysops dispar Fabricius is a common and widespread pest and vector species transmitting pathogens to animals including economically significant livestock. However, there is only limited information on genetic diversity, which crucial for understanding disease epidemiology. In this study, we examined genetic diversity of C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!