Craniopharyngioma is a rare benign intracranial epithelial tumor that, however, often recurs and sometimes kills the affected patients, one-third of which are children. In many cases, the patients acquire growth hormone deficiency and postoperatively need substitution. Generally, growth hormone promotes local release of insulin-like growth factor I (IGF-I), which in turn activates the IGF-I receptor (IGF-IR) if present. Together, these circumstances raise the question whether IGF-IR may be involved in craniopharyngioma growth. To address this issue, we analyzed phenotypically well-characterized primary low-passage craniopharyngioma cell lines from nine different patients for IGF-IR expression and IGF-I dependency. Two of the cell lines showed no/very low expression of the receptor and was independent on IGF-I, whereas five cell lines exhibited a strong expression and was clearly contingent on IGF-I. The two remaining cell lines had low receptor expression and IGF-I dependency. Upon treatment with an IGF-IR inhibitor, cells with high IGF-IR expression responded promptly with decreased Akt phosphorylation followed by growth arrest. These responses were not seen in cells with no/very low receptor expression. Growth of cell lines with low IGF-IR expression was only slightly affected by IGF-IR inhibition. Taken together, our data suggest that IGF-IR may be involved in the growth of a subset of craniopharyngiomas and points to the possibility of the involvement of IGF-IR inhibitors as a treatment modality to obtain complete tumor-free conditions before growth hormone substitution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-05-0129 | DOI Listing |
J Cardiothorac Surg
January 2025
The First Hospital of Lanzhou University, Lanzhou, China.
Background: This article aims to use high-throughput sequencing to identify miRNAs associated with ferroptosis in myocardial ischemia-reperfusion injury, select a target miRNA, and investigate its role in H9C2 cells hypoxia-reoxygenation injury.
Methods: SD rats and H9C2 cells were used as subjects. ELISA kits quantified MDA, SOD, GSH, LDH, and ferritin levels.
BMC Cancer
January 2025
Department of Otorhinolaryngology, Shenzhen Key Laboratory of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China.
Background: To investigate the role of the translocase of the outer mitochondrial membrane 40 (TOM40) in oral squamous cell carcinoma (OSCC) with the aim of identifying new biomarkers or potential therapeutic targets.
Methods: TOM40 expression level in OSCC was evaluated using datasets downloaded from The Cancer Genome Atlas (TCGA), as well as clinical data. The correlation between TOM40 expression level and the clinicopathological parameters and survival were analyzed in TCGA.
BMC Genomics
January 2025
Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
Leaf is the main photosynthetic organ at the seedling stage of rapeseed and leaf size is a crucial agronomic trait affecting rapeseed yield. Understanding the genetic mechanisms underlying leaf size is therefore important for rapeseed breeding. In this study, QTL mapping for three traits related to leaf size, i.
View Article and Find Full Text PDFNanomedicine (Lond)
January 2025
Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy.
Background: Drug delivery strategies using chitosan nanobubbles (CS-NBs) could be used to reduce drug side effects and improve outcomes in hepatocellular carcinoma (HCC) treatment. To enhance their action, a targeting agent, such as the humanized anti-GPC3 antibody GC33 (condrituzumab), could be attached to their surface. Here, we investigated the use of idarubicin-loaded CS-NBs for HCC treatment and a GC33-derived minibody (that we named 4A1) to enhance CS-NB delivery.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, Braga, 4715-330, Portugal.
Toward the aim of reducing animal testing, innovative in vitro models are required. Here, this study proposes a novel smart polymeric microscaffold to establish an advanced 3D model of dopaminergic neurons. These scaffolds are fabricated with Ormocomp via Two-Photon Polymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!