A negative regulatory element in the rabbit 3'IgH chromosomal region.

Int Immunol

Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.

Published: August 2005

Mouse and human IgH loci contain several 3'IgH enhancers. In rabbit, a single hs1,2 enhancer is located 3' of the distal germ line Calpha gene, Calpha13. We searched for additional regulatory elements in this region by using a luciferase reporter assay and nucleotide sequence analysis. Within 8 kb 3' of Calpha13, we identified a 1-kb fragment that negatively regulated the hs1,2 enhancement of the Ialpha promoter. This negative regulatory element, Calpha-NRE, contains a conserved 300-bp region that is associated with 8 of the 13 germ line Calpha genes. This conserved region contains an E box that, by electrophoretic mobility shift assay, binds an E47-like protein. At the 5' end, Calpha-NRE also includes a 270-bp region with 20-bp repeats nearly identical to those 3' of mouse and human Calpha genes, and these repeats bind unidentified nuclear protein(s). Calpha-NRE appears to be a novel regulatory element that may contribute to the regulation of IgH gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxh280DOI Listing

Publication Analysis

Top Keywords

regulatory element
12
negative regulatory
8
mouse human
8
germ calpha
8
calpha genes
8
region
5
element rabbit
4
rabbit 3'igh
4
3'igh chromosomal
4
chromosomal region
4

Similar Publications

Copper, an essential trace element and biochemical cofactor in humans plays a critical role in maintaining health. Recent studies have identified a significant association between copper levels and the progression and metastasis of cancer. Copper is primarily absorbed in the intestinal tract, often leading to an imbalance of copper ions in the body.

View Article and Find Full Text PDF

Background: Recent advancements in single-cell RNA sequencing have greatly expanded our knowledge of the heterogeneous nature of tissues. However, robust and accurate cell type annotation continues to be a major challenge, hindered by issues such as marker specificity, batch effects, and a lack of comprehensive spatial and interaction data. Traditional annotation methods often fail to adequately address the complexity of cellular interactions and gene regulatory networks.

View Article and Find Full Text PDF

Many cellular patterns exhibit a reaction-diffusion component, suggesting that Turing instability may contribute to pattern formation. However, biological gene-regulatory pathways are more complex than simple Turing activator-inhibitor models and generally do not require fine-tuning of parameters as dictated by the Turing conditions. To address these issues, we employ random matrix theory to analyze the Jacobian matrices of larger networks with robust statistical properties.

View Article and Find Full Text PDF

Monkeypox virus (MPXV), a zoonotic pathogen, re-emerged in 2022 with the Clade IIb variant, raising global health concerns due to its unprecedented spread in non-endemic regions. Recent studies have shown that Clade IIb (2022 MPXV) is marked by unique genomic mutations and epidemiological behaviors, suggesting variations in host-virus interactions. This study aimed to identify the differentially expressed genes (DEGs) induced by the 2022 MPXV infection through comprehensive bioinformatics analyses of microarray and RNA-Seq datasets from post-infected cell types with different MPXV clades.

View Article and Find Full Text PDF

Polycystic Ovary Syndrome (PCOS) is a complex endocrine disorder affecting women of childbearing age, and we aimed to reveal its underlying molecular mechanisms. Gene expression profiles from GSE138518 and GSE155489, and single-cell RNA sequencing (scRNA-seq) data from PRJNA600740 were collected and subjected to bioinformatics analysis to identify the complex molecular mechanisms of PCOS. The expression of genes was detected by RT-qPCR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!