Unlabelled: Long-circulating nanoparticles functionalized with ligands for receptors overexpressed by tumor cells have promising applications for active and passive tumor targeting. The purpose of this study was to evaluate 64Cu-radiolabeled folate-conjugated shell cross-linked nanoparticles (SCKs) as candidate agents to shuttle radionuclides and drugs into tumors overexpressing the folate receptor (FR).

Methods: SCKs were obtained by cross-linking the shell of micelles obtained from amphiphilic diblock copolymers. SCKs were then functionalized with folate, fluorescein thiosemicarbazide (FTSC), and 1,4,8,11-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid (TETA). The specific interaction of SCK-folate with the FR was investigated on KB cells. The biodistributions of 64Cu-TETA-SCK and 64Cu-TETA-SCK-folate were evaluated in athymic mice bearing small-size KB cell xenografts (10-100 mg), whereas the intratumor distributions were investigated by autoradiography in 0.3- to 0.6-g KB cell xenografts.

Results: A global solution-state functionalization strategy has been introduced for attaching optimum numbers of targeting and imaging agents onto the SCKs for increasing the efficiency of interaction with cell-surface receptors. Epifluorescence microscopy confirmed the specific interaction of FTSC-SCK-folate with the FR in vitro. 64Cu labeling of TETA-SCKs led to the radiolabeled compounds with 15%-20% yield and >95% radiochemical purity. The biodistribution results demonstrated high accumulation of 64Cu-labeled SCKs in organs of the reticuloendothelial system (RES) (56.0 +/- 7.1 %ID/g and 45.7 +/- 3.5 %ID/g [percentage injected dose per gram] in liver at 10 min after injection for folated and nonfolated SCKs, respectively) and a prolonged blood circulation. No increase of SCK tumor uptake deriving from folate conjugation was observed (5.9 +/- 2.8 %ID/g and 6.0 +/- 1.9 %ID/g at 4 h after injection for folated and nonfolated SCKs, respectively). However, tumor accumulation was higher in small-size tumors, where competitive block of SCK-folate uptake with excess folate was observed. Autoradiography results confirmed the extravasation of radiolabeled SCKs in vascularized areas of the tumor, whereas no diffusion was observed in necrotic regions.

Conclusion: Despite high RES uptake, the evaluated 64Cu-labeled SCKs exhibited long circulation in blood and were able to passively accumulate in tumors. Furthermore, SCK-folate uptake was competitively blocked by excess folate in small-size solid tumors, suggesting interaction with the FR. For these reasons, functionalized SCKs are promising drug-delivery agents for imaging and therapy of early-stage solid tumors.

Download full-text PDF

Source

Publication Analysis

Top Keywords

+/- %id/g
16
scks
10
folate-conjugated shell
8
shell cross-linked
8
cross-linked nanoparticles
8
specific interaction
8
64cu-labeled scks
8
injection folated
8
folated nonfolated
8
nonfolated scks
8

Similar Publications

Purpose: None of the antibody-drug conjugates (ADCs) targeting Claudin 18.2 (CLDN18.2) have received approval from regulatory authorities due to their limited clinical benefits.

View Article and Find Full Text PDF

Novel technetium-99m-labelled ribociclib isocyanide derivatives for imaging cyclin-dependent kinase 4/6 (CDK4/6) expression in cancer.

Eur J Med Chem

January 2025

Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, China. Electronic address:

Cyclin-dependent kinase 4/6 (CDK4/6) plays a crucial role in cell cycle regulation, is overexpressed in various cancers and is an important target in the development of radiotracers for tumour imaging. Despite the increasing recognition of CDK4/6 inhibitors in cancer therapy, their application is limited by the lack of suitable biomarkers. Herein, we developed a series of technetium-99m-labelled CDK4/6 radiotracers and utilized a linker optimization strategy to reduce their abdominal uptake and enhance their imaging properties.

View Article and Find Full Text PDF

Manganese-52 is gaining interest as an isotope for PET imaging due to its desirable decay and chemical properties for radiopharmaceutical development. Somatostatin receptor 2 (SSTR2) is significantly overexpressed by neuroendocrine tumors (NETs) and is an important target for nuclear imaging and therapy. As an agonist, [Ga]Ga-DOTATATE has demonstrated significant internalization upon interaction with receptor ligands, whereas [Ga]Ga-DOTA-JR11(as an antagonist) exhibits limited internalization but better pharmacokinetics and increased tumor uptake.

View Article and Find Full Text PDF

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Development of In-Labeled Monoclonal Antibodies Targeting SFTSV Structural Proteins for Molecular Imaging of SFTS Infectious Diseases by SPECT.

Molecules

December 2024

Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan.

No effective vaccines or treatments are currently available for severe fever with thrombocytopenia syndrome (SFTS), a fatal tick-borne infectious disease caused by the SFTS virus (SFTSV). This study evaluated the potential of In-labeled anti-SFTSV antibodies targeting SFTSV structural proteins as single-photon emission computed tomography (SPECT) imaging agents for the selective visualization of SFTSV-infected sites. This study used nuclear medicine imaging to elucidate the pathology of SFTS and assess its therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!