Background: Mesenchymal stem cells (MSCs) offer a novel therapeutic option in the treatment of acute myocardial infarction. MSCs are able to differentiate into myogenic cells after 5-azacytitdine treatment. However, 5-azacytidine might have genotoxic effects. Recently, it was reported that combined treatment with bone morphogenetic protein-2(BMP-2) and fibroblast growth factor-4(FGF-4) caused cardiac differentiation in non-precardiac mesoderm explants. Therefore, we investigated whether MSCs treated with combined BMP-2 and FGF-4 showed evidence of myogenic differentiation in vitro, and whether these cells resulted in sustained engraftment, myogenic differentiation, and improved cardiac function after implantation in infarcted myocardium.
Methods And Results: In vitro study: MSCs were treated with BMP-2 + FGF-4 (GF-MSCs) and myogenic phenotype was evaluated immunohistochemically. Cell growth curve was used to compare MSC proliferative capacity between the growth factors and 5-azacytidine treatments. In vivo study: two weeks after coronary artery occlusion, GF-MSCs (n=15), MSCs (n=5) labelled with PKH26 were injected into infarcted myocardium. Control animals (n=5) received a culture medium into the infarcted myocardium. Two weeks after implantation, some engrafted GF-MSCs or MSCs expressed sarcomeric-alpha-actinin and cardiac myosin heavy chain, as was observed in culture. Echocardiography showed that the GF-MSC group had a better (p < 0.05) left ventricular performance than the other groups.
Conclusion: GF-MSCs induced myogenic differentiation in vitro. Moreover, GF-MSCs engrafted into the infarcted myocardium increased myogenic differentiation, prevented dilation of the infarcted region, and eventually improved heart function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2143/AC.60.3.2005005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!