ICC-1132 is a malaria vaccine candidate based on a modified hepatitis B virus core particle (HBc) bearing putative protective epitopes from the circumsporozoite protein (CS) of Plasmodium falciparum. While the epitope carrier itself is immunogenic, its potency can be increased by formulation with adjuvants. As a prelude to Phase I clinical trials, rhesus macaques were immunised twice with GMP grade ICC--1132 in saline or formulated with the adjuvants Alhydrogel (Alhydrogel) or Montanide((R)) ISA 720 (Montanide). Both adjuvant formulations gave significant humoral responses after the first injection, with titres increasing further after the second dose. The Montanide formulation was the most immunogenic, but undesirable reactogenicity in the form of sterile abscesses was associated with higher dosage levels of ICC--1132. These side effects could be avoided with lower antigen load, or by formulation of the second dose in Alhydrogel. Such measures also reduced peak titres and longevity of antibodies against CS, demonstrating the delicate balance between immunogenicity and reactogenicity of new vaccine formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2005.05.036 | DOI Listing |
Acta Med Indones
October 2024
Division of Tropical and Infectious Diseases, Department of Internal Medicine, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
In 2023, Indonesia's Ministry of Health reported that nearly 75% of districts and cities in the country were free from malaria transmission, meaning 90% of the population lived in malaria-free zones. However, Papua Province, which accounts for only 1.5% of Indonesia's population, continues to contribute over 90% of the national malaria cases, with more than 16,000 reported cases in 2023.
View Article and Find Full Text PDFTrends Parasitol
January 2025
Department of Molecular Parasitology, Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany. Electronic address:
Metabolically active, genetically attenuated Plasmodium falciparum parasite lines are promising second-generation malaria vaccine candidates. Lamers et al. and Roozen et al.
View Article and Find Full Text PDFLancet
January 2025
Bandim Health Project, Indepth Network, Bissau 1004, Guinea-Bissau; Bandim Health Project, OPEN, Department of Clinical Medicine, University of Southern Denmark, Odense, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!