A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitrogen management and senescence in two maize hybrids differing in the persistence of leaf greenness: agronomic, physiological and molecular aspects. | LitMetric

Here, nitrogen management within the plant was compared in an early-senescing maize hybrid and in a late-senescing maize hybrid, both grown under field conditions with a high fertilisation input involving large quantities of fertiliser. We monitored, in representative leaf stages, the changes in metabolite content, enzyme activities and steady-state levels of transcripts for marker genes of N primary assimilation, N recycling and leaf senescence. The hybrids differed in terms of persistence of leaf greenness, the expression of marker genes and the concentration of enzymes used to describe the transition from N assimilation to N recycling. The transcription of leaf-senescence marker genes did not differ. Agronomic studies confirmed the ability of the late-senescing hybrid to absorb and store more N in shoots. Despite the differences in the mode of N management adopted by the two hybrids, we conclude that leaf senescence occurs independently of the source-to-sink transition at the high level of fertilisation used involving large quantities of fertiliser. The possibility of improving N metabolic efficiency in the latest maize hybrids is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-8137.2005.01430.xDOI Listing

Publication Analysis

Top Keywords

marker genes
12
nitrogen management
8
maize hybrids
8
persistence leaf
8
leaf greenness
8
maize hybrid
8
involving large
8
large quantities
8
quantities fertiliser
8
assimilation recycling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!