Brassinosteroids (BRs) regulate multiple aspects of plant growth and development and require an active BRASSINOSTEROID-INSENSITIVE 1 (BRI1) receptor serine/threonine kinase for hormone perception and signal transduction. In mammals, the transforming growth factor-beta (TGF-beta) family of polypeptides modulate numerous aspects of development and are perceived at the cell surface by a complex of type I and type II TGF-beta receptor serine/threonine kinases. TGF-beta receptor interacting protein (TRIP-1) is a cytoplasmic substrate of the TGF-beta type II receptor kinase and plays a role in TGF-beta signaling. TRIP-1 is a WD domain protein that also functions as an essential subunit of the eIF3 eukaryotic translation initiation factor in animals, yeast and plants. We previously cloned putative TRIP-1 homologs from bean and Arabidopsis and found that transgenic Arabidopsis plants expressing antisense TRIP-1 RNA exhibited a broad range of developmental defects including some morphological characteristics that resemble the phenotype of BR-deficient and -insensitive mutants. We now show that the BRI1 kinase domain phosphorylates Arabidopsis TRIP-1 on three specific sites in vitro (Thr-14, Thr-89 and either Thr-197 or Ser-198). Co-immunoprecipitation experiments using antibodies against TRIP-1, BRI1 and various fusion proteins strongly suggest that TRIP-1 and BRI1 also interact directly in vivo. These findings support a role for TRIP-1 in the molecular mechanisms of BR-regulated plant growth and development, possibly as a cytoplasmic substrate of the BRI1 receptor kinase.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2005.02448.xDOI Listing

Publication Analysis

Top Keywords

receptor kinase
12
tgf-beta receptor
12
receptor interacting
8
interacting protein
8
plant growth
8
growth development
8
bri1 receptor
8
receptor serine/threonine
8
trip-1
8
cytoplasmic substrate
8

Similar Publications

Background: Interleukin-1 receptor-associated kinase1 (IRAK1) plays a considerable role in the inflammatory signaling pathway. The current study aimed to identify any association between (rs1059703) single nucleotide polymorphism (SNP) and vulnerability to rheumatological diseases in the pediatric and adult Egyptian population.

Patients And Methods: The current study included four patient groups: adult Systemic lupus erythematosus (SLE), Rheumatoid arthritis (RA), juvenile systemic lupus erythematosus (JSLE), and juvenile idiopathic arthritis (JIA).

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

Pro-Arg, The Potential Anti-Diabetes Peptide, Screened from Almond by In-Silico Analysis.

Plant Foods Hum Nutr

January 2025

College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.

Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Background: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins.

Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!