Follicle-like model by granulosa cell encapsulation in a barium alginate-protamine membrane.

Tissue Eng

Dipartimento di Scienze e Tecnologie Veterinarie per la Sicurezza Alimentare, Milan, Italy.

Published: May 2006

Granulosa cells from bovine and porcine ovaries were cultured either in monolayer or in follicle-like barium alginate capsules for 6 days. Morphological investigation by electron scanning microscopy indicated that culture in a three-dimensional (3D) system allows self-organization of spherical-polyhedral shape cells. The luteinization index (progesterone:17beta-estradiol ratio) was significantly higher for monolayer cells than for the 3D cell culture system, confirming the results of morphological analysis and indicating more physiological growth. The encapsulated 3D culture system appears to be a promising way of obtaining in vitro maturation and development of follicles and oocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.2005.11.709DOI Listing

Publication Analysis

Top Keywords

culture system
8
follicle-like model
4
model granulosa
4
granulosa cell
4
cell encapsulation
4
encapsulation barium
4
barium alginate-protamine
4
alginate-protamine membrane
4
membrane granulosa
4
granulosa cells
4

Similar Publications

Objective: Ventricular shunt insertion is a common procedure in pediatric neurosurgical practice. In many areas of medicine there is a push toward rationalization of healthcare resources and a reduction in low-value tests or procedures. The intraoperative sampling of CSF at the time of shunt insertion is one traditional aspect of care that has not been rigorously evaluated.

View Article and Find Full Text PDF

Introduction: Children growing up in arid and semi-arid regions of Sub-Saharan Africa (SSA) face heightened risks, often resulting in poor developmental outcomes. In Kenya, the arid and semi-arid lands (ASAL) exhibit the lowest health and developmental indicators among children. Despite these risks, some children grow up successfully and overcome the challenges.

View Article and Find Full Text PDF

Composition and functional diversity of soil and water microbial communities in the rice-crab symbiosis system.

PLoS One

January 2025

Department of Earth and Environmental Sciences, California State University, Fresno, CA, United States of America.

Rice-crab co-culture is an environmentally friendly agricultural and aquaculture technology with high economic and ecological value. In order to clarify the structure and function of soil and water microbial communities in the rice-crab symbiosis system, the standard rice-crab field with a ring groove was used as the research object. High-throughput sequencing was performed with rice field water samples to analyze the species and abundance differences of soil bacteria and fungi.

View Article and Find Full Text PDF

Peru is among Latin American countries with the largest Indigenous population, yet ethnical health disparities persist, particularly in the Amazon region which comprises 60% of the national territory. Healthcare models that include Indigenous medicine and traditional healers present an important avenue for addressing such inequalities, as they increase cultural adequacy of services, healthcare access, and acknowledge Indigenous Rights for their perspectives to be represented in public healthcare. Understanding the underlying epistemologies of Indigenous medicine is a prerequisite for this purpose.

View Article and Find Full Text PDF

This study aims to provide an updated overview of medical error taxonomies by building on a robust review conducted in 2011. It seeks to identify the key characteristics of the most suitable taxonomy for use in high-fidelity simulation-based postgraduate courses in Critical Care. While many taxonomies are available, none seem to be explicitly designed for the unique context of healthcare simulation-based education, in which errors are regarded as essential learning opportunities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!