Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for synthesizing correlations, weighted-covariance GLS (W-COV GLS), was compared with univariate weighting with untransformed correlations (univariate r) and univariate weighting with Fisher's z-transformed correlations (univariate z). These 3 methods were crossed with listwise and pairwise deletion. Univariate z and W-COV GLS performed similarly, with W-COV GLS providing slightly better estimation of parameters and more correct model rejection rates. Missing not at random data produced high levels of relative bias in correlation and model parameter estimates and higher incorrect SEM model rejection rates. Pairwise deletion resulted in inflated standard errors for all synthesis methods and higher incorrect rejection rates for the SEM model with univariate weighting procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1037/1082-989X.10.2.227DOI Listing

Publication Analysis

Top Keywords

w-cov gls
12
univariate weighting
12
rejection rates
12
structural equation
8
equation modeling
8
synthesizing correlations
8
correlations univariate
8
pairwise deletion
8
model rejection
8
higher incorrect
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!