The emergence of antimicrobial resistance has led to an increase in research directed toward the engineering of novel polyketides. To date, less than 10 000 polyketide structures have been discovered experimentally; however, the theoretical analysis of polyketide biosynthesis performed suggests that over a billion possible structures can be synthesized. Polyketide synthesis, which involves the formation of a linear chain and its subsequent cyclization, is catalyzed by an enzyme complex called polyketide synthase (PKS). There are a number of variables in the linear chain synthesis controlled by the PKS: the number, identity, stereochemistry and sequence of the monomer units used in the elongation steps, and the degree of reduction that occurs after each of the condensation reactions. The theoretical analysis performed demonstrates that changes in these variables lead to the formation of different polyketide linear chains and, consequently, a high diversity of polyketide structures. The complexity in the number of possible structures led to the implementation of this system in BNICE, a computational framework that generates all possible biochemical pathways using a given set of enzyme reaction rules. This formulation allowed the analysis of the evolution of diversity in the synthesis mechanism and the construction of the pathway architecture of polyketide biosynthesis. It is expected that, after future implementation of the cyclization reactions, this framework can be used to identify all possible polyketides and their corresponding synthesis pathways. Consequently, this formulation would prove useful in guiding experimental approaches to engineer novel polyketides, a number of which will likely have medicinal properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja051586yDOI Listing

Publication Analysis

Top Keywords

polyketide
8
polyketide synthesis
8
synthesis pathways
8
novel polyketides
8
polyketide structures
8
theoretical analysis
8
polyketide biosynthesis
8
linear chain
8
pks number
8
synthesis
5

Similar Publications

Polyketide synthases (PKSs) are crucial multidomain enzymes in diverse natural product biosynthesis. Parrots use a type I PKS to produce a unique pigment called psittacofulvin in their feathers. In domesticated budgerigars and lovebirds, the same amino acid substitution (R644W) within malonyl/acetyltransferase (MAT) domain of this enzyme has been shown to cause the blue phenotype with no psittacofulvin pigmentation, proposing a strong evolutionary constraint on the mechanism.

View Article and Find Full Text PDF

Neptunizhulides, Cryptic -AT Polyketide Synthase-Derived Metabolites from NBU2194.

Org Lett

January 2025

Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.

Genome mining of NBU2194 resulted in the identification of a family of 17-membered macrolides, neptunizhulides A-F. Their structures were elucidated by comprehensive spectroscopic data analysis. Stereochemical assignments of the neptunizhulides were determined by -based configuration analysis, ROESY NMR, Mosher's ester derivatization, and bioinformatic predictions.

View Article and Find Full Text PDF

Scalable synthesis of (±)-gregatin A a 1,3-dipolar cycloaddition strategy.

Org Biomol Chem

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

A 6-step gram-scale synthesis of the fungal polyketide (±)-gregatin A is described. The synthetic route features an intermolecular 1,3-dipolar cycloaddition, a Mo-mediated disconnection of the isoxazole skeleton, and an acid-mediated deprotection/enamine hydrolysis and hemiketalization cascade.

View Article and Find Full Text PDF

Cyanobacteria are widespread, photosynthetic, gram-negative bacteria that generate numerous bioactive secondary metabolites complex biosynthetic enzymatic machinery. The model cyanobacterium sp. strain PCC 7002, hereafter referred to as PCC 7002, contains a type I polyketide synthase (PKS), termed olefin synthase (OlsWT), that synthesizes 1-nonadecene and 1,14-nonadecadiene: α-olefins that are important for growth at low temperatures.

View Article and Find Full Text PDF

Rifamycin and its derivatives are natural products that belong to the class of antibiotic-active polyketides and have significant therapeutic relevance within the therapy scheme of tuberculosis, a worldwide infectious disease caused by . Improving the oral bioavailability of rifamycin B was achieved through semisynthetic modifications, leading to clinically effective derivatives such as rifampicin. Genetic manipulation of the rifamycin polyketide synthase gene cluster responsible for the production of rifamycin B in the strain S699 represents a promising tool to generate new rifamycins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!