Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse.

Arch Gen Psychiatry

Laboratory of Biological Dynamics and Theoretical Medicine, Department of Psychiatry, University of California San Diego, La Jolla 92093-0603, USA.

Published: July 2005

Context: Relapse is a common clinical problem in individuals with substance dependence. Previous studies have implicated a multifactorial process underlying relapse; however, the contribution of specific neural substrates has not yet been examined.

Objective: To determine whether results from functional magnetic resonance imaging (fMRI) shortly after drug cessation could predict relapse in stimulant-dependent individuals.

Participants And Design: Treatment-seeking methamphetamine-dependent males (N = 46) underwent fMRI 3 to 4 weeks after cessation of drug use. Of the 40 subjects who were followed up a median of 370 days, 18 relapsed and 22 did not.

Main Outcome Measure: Blood oxygen level-dependent fMRI activation during a simple 2-choice prediction task.

Results: The fMRI activation patterns in right insular, posterior cingulate, and temporal cortex obtained early in recovery correctly predicted 20 of 22 subjects who did not relapse and 17 of 18 subjects who did. A Cox regression analysis revealed that the combination of right middle frontal gyrus, middle temporal gyrus, and posterior cingulate activation best predicted the time to relapse.

Conclusion: To our knowledge, this is the first investigation to show that fMRI can be used to predict relapse in substance-dependent individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1001/archpsyc.62.7.761DOI Listing

Publication Analysis

Top Keywords

predict relapse
12
activation patterns
8
fmri activation
8
posterior cingulate
8
relapse
6
fmri
5
neural activation
4
patterns methamphetamine-dependent
4
subjects
4
methamphetamine-dependent subjects
4

Similar Publications

The multicenter, phase III GMMG ReLApsE trial (EudraCT-No:2009-013856-61) randomized relapsed and/or refractory multiple myeloma (RRMM) patients equally to lenalidomide/dexamethasone (LEN/DEX, 25mg days 1-21/40mg weekly, 4-week cycles) re-induction, salvage high dose chemotherapy (sHDCT, melphalan 200mg/m2), autologous stem cell transplantation (ASCT) and LEN maintenance (10mg/day; transplant arm, n=139) versus continuous LEN/DEX (control arm, n=138). Ninety-four percent of patients had received frontline HDCT/ASCT. We report an updated analysis of survival endpoints with a median follow-up of 99 months.

View Article and Find Full Text PDF

Variations in the TP53 and KRAS genes indicate a particularly adverse prognosis in relapsed pediatric T-ALL. We hypothesized that these variations might be subclonally present at disease onset and contribute to relapse risk. To test this, we examined two cohorts of children diagnosed with T-ALL: one with 81 patients who relapsed and 79 matched non-relapsing controls, and another with 226 consecutive patients, 30 of whom relapsed.

View Article and Find Full Text PDF

Purpose: Despite advances in the treatment of adult acute lymphoblastic leukemia (ALL), relapse remains the most significant challenge in improving prognosis. Measurable residual disease (MRD) assessment can predict bone marrow relapse based on MRD positivity. As access to innovative therapies remains limited because of the high cost, chemotherapy is the widely utilized treatment option.

View Article and Find Full Text PDF

MircoRNAs predict and modulate responses to chemotherapy in leukemic patients.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Oral Biology Department, Faculty of Dentistry, Galala Plateau, Galala University, 15888), Attaka, Suez Governorate, Egypt.

Leukemia covers a broad category of cancer malignancies that specifically affect bone marrow and blood cells. While different kinds of leukemia have been identified, effective treatments are still lacking for most forms, and even those treatments considered effective can lead to relapses. MicroRNAs, or miRNAs, are short endogenous non-coding single-stranded RNAs that help control the epigenetics of gene expression.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer-related death by 2030. Early identification is rare, with a 5-year overall survival (OS) of less than 10%. Advances in the understanding of PDAC tumor biology are needed to improve these outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!