We are focused on understanding the mechanisms underlying eukaryotic gene regulation, using the human progesterone receptor (PR) and its interactions with its DNA response elements as a model system. An understanding of PR function is complicated by the presence of two transcriptionally distinct isoforms, an 83 kDa A-receptor (PR-A) and a 99 kDa B-receptor (PR-B). The two isoforms are identical except the B-receptor contains an additional 164 residues at its N-terminus. As a first step toward understanding the principles by which the two isoforms assemble at complex promoters, we examined the energetics of PR-B self-association using sedimentation velocity and sedimentation equilibrium methods. Full-length human PR-B was purified to 95% homogeneity from baculovirus-infected insect cells. Using a fluorescence hormone binding assay, we determined the purified protein to be highly active in its ability to bind ligand. Sedimentation velocity studies of hormone-bound PR-B at pH 8.0, 4 degrees C, and 50 mM NaCl demonstrate that it undergoes a concentration-dependent change in its sedimentation coefficient, existing as a 4.0S species at submicromolar concentrations but forming a 5.7S species at higher concentrations. These results strongly suggest that PR-B undergoes self-association in the micromolar range. This hypothesis was examined rigorously using sedimentation equilibrium. Global analysis of the sedimentation equilibrium data demonstrated that PR-B self-association was well described by a monomer-dimer model with a dimerization free energy of -7.2 +/- 0.7 kcal/mol. The role of NaCl in regulating PR-B dimerization was examined by carrying out sedimentation velocity and equilibrium studies under high salt conditions. At 300 mM NaCl, PR-B is exclusively monomeric in the micromolar range, thus revealing a significant ionic contribution to the assembly energetics. Further, the monomer sediments as a structurally homogeneous, but highly asymmetric, 4.0S species. Limited proteolysis of PR-B demonstrated that the hydrodynamic asymmetry is due in part to an extended, nonglobular conformation localized to the N-terminal region of PR-B. In contrast, the DNA binding domain (DBD) and hormone binding domain (HBD) exist as independent structural units, and the activation function N-terminal to the DBD (AF-1) shows moderate structure. These results represent the first rigorous analysis of the self-assembly energetics of an intact nuclear receptor and suggest that PR function is more complex than envisioned by traditional models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi050609i | DOI Listing |
Biotechnol J
January 2025
Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal.
Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer that remains an unmet medical need. Because TNBC cells do not express the most common markers of breast cancers, there is an active search for novel molecular targets in triple-negative tumors. Additionally, this subtype of breast cancer presents strong immunogenic characteristics which have been encouraging the development of immunotherapeutic approaches against the disease.
View Article and Find Full Text PDFEur J Med Chem
January 2025
University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy. Electronic address:
The novel diiron amine complexes [FeCp(CO)(NHR')(μ-CO){μ-CN(Me)(Cy)}]CFSO [R' = H, 3; Cy, 4; CHCHNH, 5; CHCHNMe, 6; CHCH(4-CHOMe), 7; CHCH(4-CHOH), 8; Cp = η-CH, Cy = CH = cyclohexyl] were synthesized in 49-92 % yields from [FeCp(CO)(μ-CO){μ-CN(Me)(Cy)}]CFSO, 1a, using a straightforward two-step procedure. They were characterized by IR and multinuclear NMR spectroscopy, and the structure of 7 was confirmed through X-ray diffraction analysis. Complexes 3-8 and the acetonitrile adducts [FeCp(CO)(NCMe)(μ-CO){μ-CN(Me)(R)}]CFSO (R = Cy, 2a; Me, 2b; Xyl = 2,6-CHMe, 2c) were assessed for their water solubility, octanol-water partition coefficient and stability in physiological-like solutions.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland.
The synthesis of ()-1-(1,3-diphenylallyl)-1-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. : A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, Moscow 119992, Russia.
Artificial peptides P4, A1 and A4 are homologous to amphipathic α-helical fragments of the influenza virus M1 protein. P4 and A4 contain the cholesterol recognition sequence CARC, which is absent in A1. As shown previously, P4 and A4 but not A1 have cytotoxic effects on some eukaryotic and bacterial cells.
View Article and Find Full Text PDFBioorg Chem
January 2025
Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia. Electronic address:
Multi-drug-resistant (MDR) pathogens represent a critical global health threat, necessitating the development of novel antimicrobial agents with broad-spectrum activity and minimal toxicity. This study investigates the antimicrobial and anti-biofilm properties of 4-Allyl-2-methoxyphenol (eugenol, EU) and (E)-3-Phenylprop-2-enal (cinnamaldehyde, CN) against 19 clinically significant pathogens through a combination of in-vitro assays and in-silico analyses. EU displayed remarkable activity, particularly against Aspergillus niger (20.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!